×

zbMATH — the first resource for mathematics

WPO, COV and IIA bargaining solutions for non-convex bargaining problems. (English) Zbl 1268.91079
Summary: We characterize all \(n\)-person multi-valued bargaining solutions, defined on the domain of all finite bargaining problems, and satisfying weak Pareto optimality (WPO), covariance (COV), and independence of irrelevant alternatives (IIA). We show that these solutions are obtained by iteratively maximizing nonsymmetric Nash products and determining the final set of points by so-called LDR decompositions. If, next, we assume the (set-theoretic) axiom of determinacy, then this class coincides with the class of iterated Nash bargaining solutions; but if we assume the axiom of choice then we are able to construct an additional large set of discontinuous and even nonmeasurable solutions. We show, however, that none of these nonmeasurable solutions can be defined in terms of set theoretic formulae. We next show that a number of existing results in the literature as well as some new results are implied by our approach. These include a characterization of all WPO, COV and IIA solutions – including single-valued ones – on the domain of all compact bargaining problems, and an extension of a theorem of Birkhoff characterizing translation invariant and homogeneous orderings.

MSC:
91B26 Auctions, bargaining, bidding and selling, and other market models
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Billingsley P (1968) Convergence of probability measures. Wiley series in probability and mathematical statistics, John Wiley & Sons, New York · Zbl 0172.21201
[2] Birkhoff G (1948) Lattice theory. American Mathematical Society Publications, American Mathematical Society, New York · Zbl 0033.10103
[3] Conley J, Wilkie S (1996) An extension of the Nash bargaining solution to nonconvex problems. Games Econ Behav 13: 26–38 · Zbl 0848.90135 · doi:10.1006/game.1996.0023
[4] d’Aspremont C (1985) Axioms for social welfare orderings. In: Hurwicz L, Schmeidler D, Sonnenschein H (eds) Social goals and social organizations. North-Holland, Amsterdam
[5] Debreu G (1964) Continuity properties of Paretian utility. Int Econ Rev 5: 285–293 · Zbl 0138.16301 · doi:10.2307/2525513
[6] Denicolò V, Mariotti M (2000) Nash bargaining theory, nonconvex problems and social welfare orderings. Theory Decis 48: 351–358 · Zbl 0963.91052 · doi:10.1023/A:1005278100070
[7] Fishburn PC (1972) Even-chance lotteries in social choice theory. Theory Decis 3: 18–40 · Zbl 0257.90001 · doi:10.1007/BF00139351
[8] Hamel G (1905) Eine Basis aller Zahlen und die unstetige Lösung der Funktionalgleichung f(x + y) = f(x) + f(y). Math Ann 60: 459–462 · JFM 36.0446.04 · doi:10.1007/BF01457624
[9] Harsanyi JC, Selten R (1972) A generalized Nash solution for two-person bargaining games with incomplete information. Manag Sci 18: 80–106 · Zbl 0262.90087 · doi:10.1287/mnsc.18.5.80
[10] Herrero MJ (1989) The Nash program: non-convex bargaining problems. J Econ Theory 49: 266–277 · Zbl 0683.90104 · doi:10.1016/0022-0531(89)90081-1
[11] Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47: 263–291 · Zbl 0411.90012 · doi:10.2307/1914185
[12] Kaneko M (1980) An extension of the Nash bargaining problem and the Nash social welfare function. Theory Decis 12: 135–148 · Zbl 0434.90011 · doi:10.1007/BF00154358
[13] Kaneko M, Nakamura K (1979) The Nash social welfare function. Econometrica 47: 423–435 · Zbl 0431.90091 · doi:10.2307/1914191
[14] Machina MJ (1982) ”Expected utility” analysis without the independence axiom. Econometrica 50: 277–323 · Zbl 0475.90015 · doi:10.2307/1912631
[15] Marek VW, Mycielski J (2001) Foundations of mathematics in the twentieth century. Am Math Month 108: 449–468 · Zbl 0978.03001 · doi:10.2307/2695803
[16] Mariotti M (1998a) Nash bargaining theory when the number of alternatives can be finite. Soc Choice Welf 15: 413–421 · Zbl 1066.91557 · doi:10.1007/s003550050114
[17] Mariotti M (1998b) Extending Nash’s axioms to nonconvex problems. Games Econ Behav 22: 377–383 · Zbl 0914.90275 · doi:10.1006/game.1997.0590
[18] Maschler M, Owen G, Peleg B (1988) Paths leading to the Nash set. In: Roth AE (eds) The shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press, Cambridge UK , pp 321–330
[19] Mycielski J, Swierczkowski S (1964) On the Lebesgue measurability and the Axiom of Determinateness. Fundam Math 54: 67–71 · Zbl 0147.19503
[20] Nash JF (1950) The bargaining problem. Econometrica 18: 155–162 · Zbl 1202.91122 · doi:10.2307/1907266
[21] Naumova N, Yanovskaya E (2001) Nash social welfare orderings. Math Soc Sci 42: 203–231 · Zbl 1101.91322 · doi:10.1016/S0165-4896(01)00070-1
[22] Podnieks K (2007) http://www.ltn.lv/\(\sim\)podnieks/gt.html
[23] Roth AE (1977) Individual rationality and Nash’s solution to the bargaining problem. Math Oper Res 2: 64–65 · Zbl 0413.90089 · doi:10.1287/moor.2.1.64
[24] Shubik M (1982) Game theory in the social sciences: concepts and solutions. MIT Press, Cambridge · Zbl 0903.90179
[25] Starmer C (2000) Developments in non-expected utility theory: the hunt for a descriptive theory of choice under risk. J Econ Lit 38: 332–382 · doi:10.1257/jel.38.2.332
[26] Xu Y, Yoshihara N (2006) Alternative characterizations of three bargaining solutions for nonconvex bargaining problems. Games Econ Behav 57: 86–92 · Zbl 1154.91418 · doi:10.1016/j.geb.2005.09.003
[27] Zame WR (2007) Can intergenerational equity be operationalized. Theor Econ 2: 187–202
[28] Zhou L (1996) The Nash bargaining theory with non-convex problems. Econometrica 65: 681–685 · Zbl 0876.90102 · doi:10.2307/2171759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.