×

zbMATH — the first resource for mathematics

Necessary optimality conditions and a new approach to multiobjective bilevel optimization problems. (English) Zbl 1267.90130
A multiobjective bilevel optimization problem using the optimistic approach is investigated. It is assumed that the leader presupposes cooperation of the follower in the sense that the latter will choose in each time that solution in the solution set of his/her parametric optimization problem which is best suited with respect to the leader’s objective function. Using the concept of Pareto optimality, together with a special scalarization function introduced in [J.-B. Hiriart-Urruty, Math. Oper. Res. 4, 79–97 (1979; Zbl 0409.90086); J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms. Part 1: Fundamentals. Grundlehren der Mathematischen Wissenschaften 305. Berlin: Springer-Verlag (1993; Zbl 0795.49001)], the authors give necessary optimality conditions. Several intermediate optimization problems are introduced to help in the investigation.

MSC:
90C29 Multi-objective and goal programming
90C46 Optimality conditions and duality in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babahadda, H., Gadhi, N.: Necessary optimality conditions for bilevel optimization problems using convexificators. J. Glob. Optim. 34, 535–549 (2006) · Zbl 1090.49021 · doi:10.1007/s10898-005-1650-5
[2] Bard, J.F.: Optimality conditions for the bilevel programming problem. Nav. Res. Logist. Q. 31, 13–26 (1984) · Zbl 0537.90087 · doi:10.1002/nav.3800310104
[3] Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic, Dordrecht (1998) · Zbl 0943.90078
[4] Dempe, S.: A necessary and sufficient optimality condition for bilevel programming problem. Optimization 25, 341–354 (1992) · Zbl 0817.90104 · doi:10.1080/02331939208843831
[5] Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic, Dordrecht (2002) · Zbl 1038.90097
[6] Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52, 333–359 (2003) · Zbl 1140.90493 · doi:10.1080/0233193031000149894
[7] Dempe, S., Gadhi, N.: Second order optimality conditions for bilevel set optimization problems. J. Glob. Optim. 47, 233–245 (2010) · Zbl 1190.90179 · doi:10.1007/s10898-009-9468-1
[8] Outrata, J.V.: On necessary optimality conditions for Stackelberg problems. J. Optim. Theory Appl. 76, 306–320 (1993) · Zbl 0802.49007 · doi:10.1007/BF00939610
[9] Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming. Kluwer Academic, Boston (1997) · Zbl 0878.90088
[10] Stackelberg, H.v.: Marktform und Gleichgewicht. Springer, Berlin (1934)
[11] Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: A bibliography review. J. Glob. Optim. 5, 291–306 (1994) · Zbl 0822.90127 · doi:10.1007/BF01096458
[12] Ye, J.J., Zhu, D.L.: Optimality conditions for bilevel programming problems. Optimization 33, 9–27 (1995) · Zbl 0820.65032 · doi:10.1080/02331939508844060
[13] Ye, J.J., Zhu, D.L.: A note on optimality conditions for bilevel programming problems. Optimization 39, 361–366 (1997) · Zbl 0879.90173 · doi:10.1080/02331939708844290
[14] Zhang, R.: Problems of hierarchical optimization in finite dimensions. SIAM J. Optim. 4, 521–536 (1995) · Zbl 0819.90107 · doi:10.1137/0804029
[15] Zhang, R., Truong, B., Zhang, Q.: Multistage hierarchical optimization problems with multi-criterion objectives. J. Ind. Manag. Optim. 7, 103–115 (2011) · Zbl 1232.49026 · doi:10.3934/jimo.2011.7.103
[16] Amahroq, T., Taa, A.: On Lagrange–Kuhn–Tucker multipliers for multiobjective optimization problems. Optimization 41, 159–172 (1997) · Zbl 0882.90114 · doi:10.1080/02331939708844332
[17] Bao, T.Q., Gupta, P., Mordukhovich, B.S.: Necessary conditions in multiobjective optimization with equilibrium constraints. J. Optim. Theory Appl. 135, 179–203 (2007) · Zbl 1146.90508 · doi:10.1007/s10957-007-9209-x
[18] Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983) · Zbl 0582.49001
[19] Ciligot-Travain, M.: On Lagrange–Kuhn–Tucker multipliers for Pareto optimization problem. Numer. Funct. Anal. Optim. 15, 689–693 (1994) · Zbl 0831.49021 · doi:10.1080/01630569408816587
[20] Hiriart-Urruty, J.B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979) · Zbl 0409.90086 · doi:10.1287/moor.4.1.79
[21] Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993) · Zbl 0795.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.