×

zbMATH — the first resource for mathematics

Bell’s inequalities and quantum communication complexity. (English) Zbl 1267.81086
Summary: We prove that for every Bell’s inequality, including those which are not yet known, there always exists a communication complexity problem, for which a protocol assisted by states which violate the inequality is more efficient than any classical protocol. Violation of Bell’s inequalities is the necessary and sufficient condition for a quantum protocol to beat the classical ones.

MSC:
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P15 Quantum measurement theory, state operations, state preparations
94A40 Channel models (including quantum) in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Schrödinger, Naturwissenschaften 23 pp 807– (1935) ISSN: http://id.crossref.org/issn/0028-1042 · Zbl 0012.42703 · doi:10.1007/BF01491891
[2] E. Schrödinger, Naturwissenschaften 23 pp 823– (1935) · doi:10.1007/BF01491914
[3] E. Schrödinger, Naturwissenschaften 23 pp 844– (1935) · doi:10.1007/BF01491987
[4] J. S. Bell, Physics (Long Island City, N.Y.) 1 pp 195– (1964) ISSN: http://id.crossref.org/issn/0554-128X
[5] M. A. Nielsen, in: Quantum Computation and Quantum Information (2000) · Zbl 1049.81015
[6] A. C.-C. Yao, in: Proceedings of the 11th Annual ACM Symposium on Theory of Computing (1979)
[7] E. Kushilevitz, in: Communication Complexity (1997) · doi:10.1016/S0065-2458(08)60342-3
[8] DOI: 10.1103/PhysRevA.56.1201 · doi:10.1103/PhysRevA.56.1201
[9] DOI: 10.1103/PhysRevA.60.2737 · doi:10.1103/PhysRevA.60.2737
[10] DOI: 10.1103/PhysRevLett.23.880 · Zbl 1371.81014 · doi:10.1103/PhysRevLett.23.880
[11] D. M. Greenberger, Am. J. Phys. 58 pp 1131– (1990) ISSN: http://id.crossref.org/issn/0002-9505 · Zbl 0948.81511 · doi:10.1119/1.16243
[12] DOI: 10.1103/PhysRevA.64.032112 · doi:10.1103/PhysRevA.64.032112
[13] DOI: 10.1103/PhysRevLett.88.210401 · Zbl 1246.81020 · doi:10.1103/PhysRevLett.88.210401
[14] DOI: 10.1103/PhysRevLett.65.1838 · Zbl 0971.81507 · doi:10.1103/PhysRevLett.65.1838
[15] A. V. Belinskii, Phys. Usp. 36 pp 653– (1993) ISSN: http://id.crossref.org/issn/1063-7869 · doi:10.1070/PU1993v036n08ABEH002299
[16] DOI: 10.1103/PhysRevA.46.5375 · doi:10.1103/PhysRevA.46.5375
[17] DOI: 10.1103/PhysRevLett.85.4418 · doi:10.1103/PhysRevLett.85.4418
[18] DOI: 10.1103/PhysRevLett.88.040404 · Zbl 1243.81029 · doi:10.1103/PhysRevLett.88.040404
[19] DOI: 10.1103/PhysRevLett.89.197901 · doi:10.1103/PhysRevLett.89.197901
[20] DOI: 10.1103/PhysRevLett.74.2619 · Zbl 1020.81519 · doi:10.1103/PhysRevLett.74.2619
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.