×

A novel general formulation for singular stress field using the es-FEM method for the analysis of mixed-mode cracks. (English) Zbl 1267.74112

Summary: This paper presents a general formulation for simulating the singular stress field at the vicinity of the crack-tip for linear fracture mechanics problems, based on the edge-based smoothed finite element method (ES-FEM) settings. This novel “singular ES-FEM” makes use of the unique feature offered by the ES-FEM that only the assumed displacement values (not the derivatives) are required to compute the stiffness matrix of the discretized system. The present singular ES-FEM method uses a basic mesh of linear triangular elements and a layer of novel “five-noded crack-tip elements” sharing the crack-tip node. The five-noded crack-tip element has one additional node on each of the edges connected to the crack-tip, and the locations of the “edge-node” can be arbitrary. A number of examples are analyzed and the results demonstrate that the present singular ES-FEM is generally softer and much more accurate than the existing FEM. The stress intensity factors obtained using the singular ES-FEM are very stable for different area-integration paths designed around the crack-tip. The present singular ES-FEM is found an excellent alternative to the standard FEM for fracture problems.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74G70 Stress concentrations, singularities in solid mechanics
74R10 Brittle fracture
Full Text: DOI

References:

[1] DOI: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[2] Chen L., Commun. Numer. Meth. Eng.
[3] DOI: 10.1016/j.finel.2007.05.009 · doi:10.1016/j.finel.2007.05.009
[4] DOI: 10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K · Zbl 0989.74067 · doi:10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
[5] DOI: 10.1016/0013-7944(85)90029-3 · doi:10.1016/0013-7944(85)90029-3
[6] DOI: 10.1142/S0219876208001510 · Zbl 1222.74044 · doi:10.1142/S0219876208001510
[7] DOI: 10.1201/9781420082104 · Zbl 1205.74003 · doi:10.1201/9781420082104
[8] Liu G. R., Finite Element Method: A Practical Course (2003)
[9] DOI: 10.1007/s00466-006-0075-4 · Zbl 1169.74047 · doi:10.1007/s00466-006-0075-4
[10] DOI: 10.1016/j.jsv.2008.08.027 · doi:10.1016/j.jsv.2008.08.027
[11] Liu G. R., Eng. Fract. Mech.
[12] DOI: 10.1002/nme.1968 · Zbl 1194.74432 · doi:10.1002/nme.1968
[13] DOI: 10.1016/j.compstruc.2008.09.003 · doi:10.1016/j.compstruc.2008.09.003
[14] DOI: 10.1142/S0219876205000661 · Zbl 1137.74303 · doi:10.1142/S0219876205000661
[15] DOI: 10.1002/(SICI)1097-0207(19990930)46:3<341::AID-NME678>3.0.CO;2-T · Zbl 0965.74079 · doi:10.1002/(SICI)1097-0207(19990930)46:3<341::AID-NME678>3.0.CO;2-T
[16] DOI: 10.1002/nme.1651 · Zbl 1113.74075 · doi:10.1002/nme.1651
[17] DOI: 10.1002/nme.2181 · Zbl 1159.74456 · doi:10.1002/nme.2181
[18] DOI: 10.1115/1.3601206 · doi:10.1115/1.3601206
[19] DOI: 10.1115/1.3173676 · doi:10.1115/1.3173676
[20] DOI: 10.1115/1.801535 · doi:10.1115/1.801535
[21] DOI: 10.1115/1.3153665 · Zbl 0463.73103 · doi:10.1115/1.3153665
[22] DOI: 10.1002/nme.972 · Zbl 1060.74677 · doi:10.1002/nme.972
[23] Zienkiewicz O. C., The Finite Element Method (2000) · Zbl 0962.76056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.