×

zbMATH — the first resource for mathematics

Nonlocal variational models for inpainting and interpolation. (English) Zbl 1267.68278
Image inpainting is a very active research area in image analysis and processing. The main task of inpainting is to obtain an image interpolation in a region in which data are missing. Image inpainting has numerous applications to image and video editing, and it is of theoretical interest. In this paper the authors establish a precise mathematical formulation for image inpainting models. The paper is divided into three parts. In the first part the authors review a general nonlocal variational model for image inpainting. In the second part, they study the problem of simultaneous inpainting of stereo images and the inpainting of disparity maps. In the third part, the authors consider an example of video inpainting based on the propagation of inpainted frame. Finally the authors discuss some basic inpainting algorithms and display some numerical experiments illustrating the properties of proposed models. The paper is hard to read for a non-mathematician reader.

MSC:
68U10 Computing methodologies for image processing
35A15 Variational methods applied to PDEs
65C50 Other computational problems in probability (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1023/A:1008170101536 · Zbl 1060.68635 · doi:10.1023/A:1008170101536
[2] Ambrosio L., Functions of Bounded Variation and Free Discontinuity Problems (2000) · Zbl 0957.49001
[3] DOI: 10.1090/surv/165 · doi:10.1090/surv/165
[4] DOI: 10.1007/s11263-010-0418-7 · Zbl 1235.94015 · doi:10.1007/s11263-010-0418-7
[5] DOI: 10.1137/080743883 · Zbl 1210.49002 · doi:10.1137/080743883
[6] DOI: 10.1109/TPAMI.2006.64 · Zbl 05110888 · doi:10.1109/TPAMI.2006.64
[7] DOI: 10.1109/83.935036 · Zbl 1037.68771 · doi:10.1109/83.935036
[8] DOI: 10.1145/1531326.1531330 · doi:10.1145/1531326.1531330
[9] DOI: 10.1109/TIP.2003.815261 · Zbl 05452767 · doi:10.1109/TIP.2003.815261
[10] Bertsekas D. P., Nonlinear Programming (1999)
[11] Bishop C. M., Pattern Recognition and Machine Learning (2006) · Zbl 1107.68072
[12] DOI: 10.1007/s10851-007-0017-6 · Zbl 1451.94007 · doi:10.1007/s10851-007-0017-6
[13] J. Bourgain, H. Brezis and P. Mironescu, Optimal Control and Partial Differential Equation: In Honor to Professor Alain Bensoussan’s 60th Birthday (IOS Press, 2001) pp. 439–455.
[14] DOI: 10.1109/TIP.2008.924281 · Zbl 05516597 · doi:10.1109/TIP.2008.924281
[15] DOI: 10.1007/s00211-006-0029-y · Zbl 1151.94310 · doi:10.1007/s00211-006-0029-y
[16] DOI: 10.1137/040616024 · Zbl 1108.94004 · doi:10.1137/040616024
[17] DOI: 10.1109/TIP.2009.2017171 · Zbl 1371.94063 · doi:10.1109/TIP.2009.2017171
[18] Cannarsa P., Progress in Nonlinear Differential Equations and their Applications 58, in: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control (2004)
[19] DOI: 10.1137/110823572 · Zbl 1235.94017 · doi:10.1137/110823572
[20] Chan T., SIAM J. Appl. Math. 63 pp 564–
[21] Chan T., SIAM J. Appl. Math. 62 pp 1019–
[22] DOI: 10.1109/34.1000236 · doi:10.1109/34.1000236
[23] DOI: 10.1109/TIP.2004.833105 · Zbl 05452847 · doi:10.1109/TIP.2004.833105
[24] Demanet L., Appl. Comput. Math. 1100 pp 217–
[25] DOI: 10.1023/A:1011290230196 · Zbl 0988.68819 · doi:10.1023/A:1011290230196
[26] Digne J., Handbook of Mathematical Methods in Imaging (2010)
[27] DOI: 10.1145/882262.882267 · Zbl 05457275 · doi:10.1145/882262.882267
[28] Ellis R. S., Entropy, Large Deviations, and Statistical Mechanics (2005)
[29] Esedoglu S., Interfaces Free Boundaries 10 pp 263–
[30] Esedoglu S., European J. Appl. Math. 13 pp 353–
[31] DOI: 10.1007/978-3-642-03641-5_25 · Zbl 05596576 · doi:10.1007/978-3-642-03641-5_25
[32] DOI: 10.1007/978-3-642-23094-3_5 · Zbl 05971252 · doi:10.1007/978-3-642-23094-3_5
[33] DOI: 10.1137/060669358 · Zbl 1140.68517 · doi:10.1137/060669358
[34] DOI: 10.1137/070698592 · Zbl 1181.35006 · doi:10.1137/070698592
[35] Hartley R., Multiple View Geometry in Computer Vision (2000) · Zbl 0956.68149
[36] DOI: 10.1016/j.cviu.2009.11.004 · Zbl 06019143 · doi:10.1016/j.cviu.2009.11.004
[37] DOI: 10.1103/PhysRev.106.620 · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[38] DOI: 10.1109/TPAMI.2006.108 · Zbl 05111341 · doi:10.1109/TPAMI.2006.108
[39] DOI: 10.1109/TPAMI.2004.10 · Zbl 05111563 · doi:10.1109/TPAMI.2004.10
[40] DOI: 10.1007/978-3-540-92957-4_24 · Zbl 05500166 · doi:10.1007/978-3-540-92957-4_24
[41] DOI: 10.1137/050622249 · Zbl 1161.68827 · doi:10.1137/050622249
[42] DOI: 10.1109/TIP.2007.906269 · Zbl 05453779 · doi:10.1109/TIP.2007.906269
[43] DOI: 10.1145/1073204.1073263 · Zbl 05457407 · doi:10.1145/1073204.1073263
[44] DOI: 10.1109/83.982815 · Zbl 05453142 · doi:10.1109/83.982815
[45] DOI: 10.1007/978-1-4684-0567-5 · doi:10.1007/978-1-4684-0567-5
[46] DOI: 10.1007/3-540-56484-5 · doi:10.1007/3-540-56484-5
[47] DOI: 10.1145/882262.882269 · Zbl 05457528 · doi:10.1145/882262.882269
[48] DOI: 10.1109/34.56205 · Zbl 05111848 · doi:10.1109/34.56205
[49] DOI: 10.1016/j.cviu.2008.09.003 · Zbl 05690602 · doi:10.1016/j.cviu.2008.09.003
[50] DOI: 10.1007/s11263-010-0337-7 · Zbl 06023133 · doi:10.1007/s11263-010-0337-7
[51] DOI: 10.1007/s00526-003-0195-z · Zbl 1352.46037 · doi:10.1007/s00526-003-0195-z
[52] DOI: 10.1109/TIP.2008.2008067 · Zbl 1371.94300 · doi:10.1109/TIP.2008.2008067
[53] DOI: 10.1109/5.726788 · doi:10.1109/5.726788
[54] DOI: 10.1023/A:1007963824710 · Zbl 05472115 · doi:10.1023/A:1007963824710
[55] DOI: 10.1007/978-3-642-85473-6 · doi:10.1007/978-3-642-85473-6
[56] DOI: 10.1145/1073204.1073274 · Zbl 05457615 · doi:10.1145/1073204.1073274
[57] DOI: 10.1007/s11263-006-5631-z · Zbl 05062699 · doi:10.1007/s11263-006-5631-z
[58] Wang H., Graph. Models 69 pp 55–
[59] DOI: 10.1109/TPAMI.2007.60 · Zbl 05340765 · doi:10.1109/TPAMI.2007.60
[60] DOI: 10.1214/aos/1176346060 · Zbl 0517.62035 · doi:10.1214/aos/1176346060
[61] DOI: 10.1007/978-3-642-81929-2 · doi:10.1007/978-3-642-81929-2
[62] DOI: 10.1109/TPAMI.2006.70 · Zbl 05111126 · doi:10.1109/TPAMI.2006.70
[63] DOI: 10.1007/978-3-540-74936-3_22 · Zbl 05344997 · doi:10.1007/978-3-540-74936-3_22
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.