×

Broadcasting in UDG radio networks with unknown topology. (English) Zbl 1267.68032

Summary: The paper considers broadcasting in radio networks, modeled as unit disk graphs (UDG). Such networks occur in wireless communication between sites (e.g., stations or sensors) situated in a terrain. Network stations are represented by points in the Euclidean plane, where a station is connected to all stations at distance at most 1 from it. A message transmitted by a station reaches all its neighbors, but a station hears a message (receives the message correctly) only if exactly one of its neighbors transmits at a given time step. One station of the network, called the source, has a message which has to be disseminated to all other stations. Stations are unaware of the network topology. Two broadcasting models are considered. In the conditional wake up model, the stations other than the source are initially idle and cannot transmit until they hear a message for the first time. In the spontaneous wake up model, all stations are awake (and may transmit messages) from the beginning. It turns out that broadcasting time depends on two parameters of the UDG network, namely, its diameter \(D\) and its granularity \(g\), which is the inverse of the minimum distance between any two stations. We present a deterministic broadcasting algorithm which works in time \(O(Dg)\) under the conditional wake up model and prove that broadcasting in this model cannot be accomplished by any deterministic algorithm in time better than \(\Omega(D\sqrt{g})\). For the spontaneous wake up model, we design two deterministic broadcasting algorithms: the first works in time \(O(D + g^2)\) and the second in time \(O(D \log g)\). While neither of these algorithms alone is optimal for all parameter values, we prove that the algorithm obtained by interleaving their steps, and thus working in time \(O(\min\{D + g^2, D\log{g}\})\), turns out to be optimal by establishing a matching lower bound.

MSC:

68M10 Network design and communication in computer systems
68W15 Distributed algorithms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alon, N.; Bar-Noy, A.; Linial, N.; Peleg, D., A lower bound for radio broadcast, J. Comp. Syst. Sci., 43, 290-298 (1991) · Zbl 0753.68006 · doi:10.1016/0022-0000(91)90015-W
[2] Avin, C., Ercal, G.: On the cover time of random geometric graphs. In: Proc. 32th Int. Colloq. on Automata, Languages and Programming (ICALP 2005). LNCS, vol. 3580, pp. 677-689 (2005) · Zbl 1084.05504
[3] Bar-Yehuda, R.; Goldreich, O.; Itai, A., On the time complexity of broadcast in radio networks: an exponential gap between determinism and randomization, J. Comp. Syst. Sci., 45, 104-126 (1992) · Zbl 0752.68009 · doi:10.1016/0022-0000(92)90042-H
[4] Bruschi, D.; Del Pinto, M., Lower bounds for the broadcast problem in mobile radio networks, Distributed Comput., 10, 129-135 (1997) · Zbl 1448.68039 · doi:10.1007/s004460050030
[5] Chlamtac, I.; Kutten, S., On broadcasting in radio networks—problem analysis and protocol design, IEEE Trans. Commun., 33, 1240-1246 (1985) · Zbl 0579.94029 · doi:10.1109/TCOM.1985.1096245
[6] Chlamtac, I.; Weinstein, O., The wave expansion approach to broadcasting in multihop radio networks, IEEE Trans. Commun., 39, 426-433 (1991) · doi:10.1109/26.79285
[7] Chlebus, B.; Ga̧sieniec, L.; Gibbons, A.; Pelc, A.; Rytter, W., Deterministic broadcasting in unknown radio networks, Distributed Comput., 15, 27-38 (2002) · Zbl 1448.68084 · doi:10.1007/s446-002-8028-1
[8] Chlebus, B., Ga̧sieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broadcasting. In: Proc. 27th Int. Colloq. on Automata, Languages and Programming (ICALP 2000). LNCS, vol. 1853, pp. 717-728 (2000) · Zbl 0973.68501
[9] Chlebus, B., Kowalski, D.: A better wake-up in radio networks. In: Proc. 23rd Symp. on Principles of Distributed Computing (PODC 2004) (2004) · Zbl 1321.68019
[10] Chrobak, M., Ga̧sieniec, L., Kowalski, D.: The wake-up problem in multi-hop radio networks. In: Proc. 15th ACM-SIAM Symp. on Discrete Algorithms (SODA 2004), pp. 985-993 (2004) · Zbl 1318.68050
[11] Chrobak, M., Ga̧sieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. In: Proc. 41st Symp. on Foundations of Computer Science (FOCS 2000), pp. 575-581 (2000) · Zbl 1005.68009
[12] Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broadcasting on unknown radio networks. In: Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2001), pp. 709-718 (2001) · Zbl 0989.94041
[13] Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: Proc. 44th Symp. on Foundations of Computer Science (FOCS 2003), pp. 492-501 (2003) · Zbl 1100.68649
[14] De Marco, G.: Distributed broadcast in unknown radio networks. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (SODA 2008) (2008) · Zbl 1192.94018
[15] Dessmark, A.; Pelc, A., Broadcasting in geometric radio networks, J. Discrete Algorithms, 5, 187-201 (2007) · Zbl 1134.94301 · doi:10.1016/j.jda.2006.07.001
[16] Diks, K.; Kranakis, E.; Krizanc, D.; Pelc, A., The impact of knowledge on broadcasting time in linear radio networks, Theor. Comp. Sci., 287, 449-471 (2002) · Zbl 1061.68008 · doi:10.1016/S0304-3975(01)00256-0
[17] Elkin, M., Kortsarz, G.: Improved broadcast schedule for radio networks. In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms (SODA 2005), pp. 222-231 (2005) · Zbl 1297.68041
[18] Emek, Y., Kantor, E., Peleg, D.: On the effect of the deployment setting on broadcasting in Euclidean radio networks (submitted) · Zbl 1301.68144
[19] Fusco, E., Pelc, A.: Broadcasting in UDG radio networks with missing and inaccurate information (submitted) · Zbl 1161.90324
[20] Gaber, I.; Mansour, Y., Centralized broadcast in multihop radio networks, J. Algorithms, 46, 1-20 (2003) · Zbl 1033.90012 · doi:10.1016/S0196-6774(02)00292-4
[21] Ga̧sieniec, L.; Pelc, A.; Peleg, D., The wakeup problem in synchronous broadcast systems, SIAM J. Discrete Math., 14, 207-222 (2001) · Zbl 0968.68197 · doi:10.1137/S0895480100376022
[22] Ga̧sieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks. In: Proc. 24th ACM Symp. on Principles Of Distributed Computing (PODC 2005), pp. 129-137 (2005) · Zbl 1314.68155
[23] Jurdzinski, T., Stachowiak, G.: Probabilistic algorithms for the wakeup problem in single-hop radio networks. In: Proc. 13th Int. Symp. on Algorithms and Computation (ISAAC 2002). LNCS, vol. 2518, pp. 535-549 (2002) · Zbl 1019.68813
[24] Kesselman, A., Kowalski, D.: Fast Distributed Algorithm for Convergecast in Ad Hoc Geometric Radio Networks. In: Proc. 2nd Int. Conf. on Wireless on Demand Network Systems and Service (WONS 2005), pp. 119-124 (2005) · Zbl 1096.68781
[25] Kowalski, D.; Pelc, A., Time of deterministic broadcasting in radio networks with local knowledge, SIAM J. Comput., 33, 870-891 (2004) · Zbl 1105.68113 · doi:10.1137/S0097539702419339
[26] Kowalski, D.; Pelc, A., Time complexity of radio broadcasting: adaptiveness vs. obliviousness and randomization vs. determinism, Theor. Comp. Sci., 333, 355-371 (2005) · Zbl 1070.68009 · doi:10.1016/j.tcs.2004.04.017
[27] Kowalski, D.; Pelc, A., Broadcasting in undirected ad hoc radio networks, Distributed Comput., 18, 43-57 (2005) · Zbl 1264.68218 · doi:10.1007/s00446-005-0126-7
[28] Kowalski, D.; Pelc, A., Optimal deterministic broadcasting in known topology radio networks, Distributed Comput., 19, 185-195 (2007) · Zbl 1266.68231 · doi:10.1007/s00446-006-0007-8
[29] Kranakis, E.; Krizanc, D.; Pelc, A., Fault-tolerant broadcasting in radio networks, J. Algorithms, 39, 47-67 (2001) · Zbl 0974.68009 · doi:10.1006/jagm.2000.1147
[30] Kuhn, F., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. In: Proc. DIALM-POMC Joint Workshop on Foundations of Mobile Computing, pp. 69-78 (2003)
[31] Kushilevitz, E.; Mansour, Y., An Ω(D log (N/D)) lower bound for broadcast in radio networks, SIAM J. Comput., 27, 702-712 (1998) · Zbl 0908.68067 · doi:10.1137/S0097539794279109
[32] Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: Proc. 24th ACM Symp. on Principles of Distributed Computing (PODC 2005), pp. 148-157 (2005) · Zbl 1314.68163
[33] Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: Proc. 17th ACM Symp. on Parallel Algorithms (SPAA 2005), pp. 39-48 (2005) · Zbl 1267.68042
[34] Muthukrishnan, S., Pandurangan, G.: The bin-covering technique for thresholding random geometric graph properties. In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms (SODA 2005), pp. 989-998 (2005) · Zbl 1297.05221
[35] Ravishankar, K.; Singh, S., Broadcasting on [0,L], Discrete Appl. Math., 53, 299-319 (1994) · Zbl 0807.94038 · doi:10.1016/0166-218X(94)90193-7
[36] Sen, A., Huson, M. L.: A New Model for Scheduling Packet Radio Networks. In: Proc. 15th Joint Conf. of the IEEE Computer and Communication Societies (IEEE INFOCOM 1996), pp. 1116-1124 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.