×

zbMATH — the first resource for mathematics

Common zeros of the solutions of two non-homogeneous first order differential equations. (English) Zbl 1267.30073
Using Nevanlinna’s theorem, the author considers two non-homogeneous first differential equations and investigates the solutions of these two differential equations having the same zeros or nearly the same zeros under certain conditions.
MSC:
30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
34M05 Entire and meromorphic solutions to ordinary differential equations in the complex domain
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alotaibi A.: On complex oscillation theory. Results Math. 47, 165–175 (2005) · Zbl 1101.34071 · doi:10.1007/BF03323023
[2] Asiri A.: Common zeros of the solutions of two differential equations. Comput. Methods Funct. Theory 12(1), 67–85 (2012) · Zbl 1267.30072 · doi:10.1007/BF03321813
[3] Asiri, A.: Common zeros of the solutions of two differential equations with transcendental coefficients. J. Inequal. Appl. (to appear). · Zbl 1276.34078
[4] Bank S.B., Laine I.: On the oscillation theory of f” + A f = 0 where A is entire. Trans. Am. Math. Soc. 273(1), 351–363 (1982) · Zbl 0505.34026
[5] Bank S.B., Laine I.: Representations of solutions of periodic second order linear differential equations. J. Reine Angew. Math. 344, 1–21 (1983) · Zbl 0524.34007
[6] Bank S.B., Laine I., Langley J.K.: On the frequency of zeros of solutions of second order linear differential equations. Results Math. 10, 8–24 (1986) · Zbl 0635.34007 · doi:10.1007/BF03322360
[7] Bank S.B., Laine I., Langley J.K.: Oscillation results for solutions of linear differential equations in the complex plane. Results Math. 16, 3–15 (1989) · Zbl 0705.34008 · doi:10.1007/BF03322641
[8] Bank S.B., Langley J.K.: Oscillation theory for higher order linear differential equations with entire coefficients. Complex Var. Theory Appl. 16(2–3), 163–175 (1991) · Zbl 0745.30032 · doi:10.1080/17476939108814478
[9] Hayman W.K.: Meromorphic functions. In: Oxford Mathematical Monographs. Clarendon Press, Oxford (1964) · Zbl 0115.06203
[10] Hille E.: Ordinary differential equations in the complex domain. Wiley, New York (1976) · Zbl 0343.34007
[11] Laine, I.: Nevanlinna theory and complex differential equations. In: de Gruyter Studies in Mathematics 15. Walter de Gruyter & Co. Berlin (1993) · Zbl 0784.30002
[12] Langley J.K.: Some oscillation theorems for higher order linear differential equations with entire coefficients of small growth. Results Math. 20(1–2), 517–529 (1991) · Zbl 0743.34039 · doi:10.1007/BF03323190
[13] Langley, J.K.: On entire solutions of linear differential equations with one dominant coefficient. Analysis 15(2), 187–204 (1995). Corrections in: Analysis 15(4), 433 (1995) · Zbl 0832.30020
[14] Rossi J.: Second order differential equations with transcendental coefficients. Proc. Am. Math. Soc. 97, 61–66 (1986) · Zbl 0596.30047 · doi:10.1090/S0002-9939-1986-0831388-8
[15] Wittich H.: Neuere Untersuchungen über eindeutige analytische Funktionen Ergebnisse der Mathematik und ihrer Grenzgebiete 8. Springer, Berlin (1955) · Zbl 0067.05501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.