×

zbMATH — the first resource for mathematics

An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional. (English) Zbl 1266.74044

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74R10 Brittle fracture
74G65 Energy minimization in equilibrium problems in solid mechanics
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s002050050051 · Zbl 0890.49019
[2] Ambrosio L., Oxford Mathematical Monographs, in: Functions of Bounded Variation and Free Discontinuity Problems (2000)
[3] DOI: 10.1016/j.jmps.2009.04.011 · Zbl 1426.74257
[4] Barbu V., Mathematics and Its Applications (East European Series) 10, in: Convexity and Optimization in Banach Spaces (1986)
[5] Bourdin B., Interfaces Free Bound. 9 pp 411–
[6] DOI: 10.1016/S0022-5096(99)00028-9 · Zbl 0995.74057
[7] DOI: 10.1017/CBO9780511618635 · Zbl 1118.65117
[8] Braides A., Lecture Notes in Mathematics 1694, in: Approximation of Free-Discontinuity Problems (1998) · Zbl 0909.49001
[9] DOI: 10.1093/acprof:oso/9780198507840.001.0001
[10] DOI: 10.1007/978-1-4757-3658-8
[11] DOI: 10.1137/080741033 · Zbl 1305.74080
[12] DOI: 10.1051/m2an:1999140 · Zbl 0948.65113
[13] DOI: 10.1137/07069047X · Zbl 1176.65122
[14] DOI: 10.1007/s00205-002-0240-7 · Zbl 1030.74007
[15] DOI: 10.1007/s002110050009 · Zbl 0943.65075
[16] DOI: 10.1007/s00205-004-0351-4 · Zbl 1064.74150
[17] DOI: 10.1007/BF01052971 · Zbl 0682.49002
[18] DOI: 10.1016/j.jmps.2007.04.011 · Zbl 1166.74413
[19] DOI: 10.1137/0733054 · Zbl 0854.65090
[20] Evans L. C., Graduate Studies in Mathematics 19, in: Partial Differential Equations (1998)
[21] DOI: 10.1142/S0218202501001045 · Zbl 1010.49010
[22] DOI: 10.1002/cpa.3039 · Zbl 1068.74056
[23] DOI: 10.1016/S0022-5096(98)00034-9 · Zbl 0966.74060
[24] DOI: 10.1007/s00526-004-0269-6 · Zbl 1068.35189
[25] DOI: 10.1098/rsta.1921.0006
[26] DOI: 10.1137/1.9781611970920
[27] DOI: 10.1137/1.9781611970845
[28] DOI: 10.1007/s10659-009-9189-1 · Zbl 1166.74029
[29] DOI: 10.1142/S0218202508003236 · Zbl 1155.74035
[30] DOI: 10.1007/b98874 · Zbl 0930.65067
[31] Weir A. J., Lebesgue Integration and Measure (1973) · Zbl 0257.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.