×

Joint numerical ranges, quantum maps, and joint numerical shadows. (English) Zbl 1266.15034

The present work is concerned with the joint numerical range (JNR), numerical range, quantum maps and their applications in quantum mechanics, especially in the theory of quantum information. Theorem 1 shows that the JNR of an \(m\)-tuple of Hermitian operators is a linear projection of the set of pure quantum states to \(\mathbb R^m\). With any \(m\)-tuple of Hermitian operators, the authors associate a probability measure on \(\mathbb R^m\). This is the joint numerical shadow of the \(m\)-tuple of Hermitian operators; it extends the concept of numerical shadow of a complex operator. Several properties of joint numerical shadows are put forward. The effects of the quantum map \(\Phi\) on \(m\)-tuples of Hermitian operators are examined. Applications of the authors’ material in the theory of quantum information are illustrated by examples.

MSC:

15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
47A12 Numerical range, numerical radius
81P16 Quantum state spaces, operational and probabilistic concepts
51M15 Geometric constructions in real or complex geometry
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Horn, A.; Johnson, C. R., Topics in Matrix Analysis (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0801.15001
[2] Gustafson, K. E.; Rao, D. K.M., Numerical Range: The Field of Values of Linear Operators and Matrices (1997), Springer-Verlag: Springer-Verlag New York
[3] Toeplitz, O., Das algebraische Analogon zu einem Satze von Fejér, Math. Z., 2, 187-197 (1918) · JFM 46.0157.02
[4] Hausdorff, F., Der Wertvorrat einer Bilinearform, Math. Z., 3, 314-316 (1919) · JFM 47.0088.02
[5] Gutkin, E., The Toeplitz-Hausdorff theorem revisited: relating linear algebra and geometry, Math. Intelligencer, 26, 8-14 (2004) · Zbl 1187.47008
[6] Jonckheere, E.; Ahmad, F.; Gutkin, E., Differential topology of numerical range, Linear Algebra Appl., 279, 227-254 (1998) · Zbl 0934.15030
[7] Li, C. K., A simple proof of the elliptical range theorem, Proc. Amer. Math. Soc., 124, 1985-1986 (1996) · Zbl 0857.15020
[8] Keeler, D. S.; Rodman, L.; Spitkovsky, I. M., The numerical range of \(3 \times 3\) matrices, Linear Algebra Appl., 252, 115-1139 (1997) · Zbl 0876.15020
[9] Kribs, D. W.; Pasieka, A.; Laforest, M.; Ryan, C.; Silva, M. P., Research problems on numerical ranges in quantum computing, Linear and Multilinear Algebra, 57, 491-502 (2009) · Zbl 1167.81010
[10] Schulte-Herbrüggen, T.; Dirr, G.; Helmke, U.; Glaser, S. J., The significance of the c-numerical range and the local c-numerical range in quantum control and quantum information, Linear and Multilinear Algebra, 56, 3-26 (2008) · Zbl 1134.81018
[11] Gawron, P.; Puchała, Z.; Miszczak, J. A.; Skowronek, Ł.; Choi, M.-D.; Życzkowski, K., Restricted numerical range: a versatile tool in the theory of quantum information, J. Math. Phys., 51, 102204 (2010), (24 pp.) · Zbl 1314.81045
[12] Dunkl, C. F.; Gawron, P.; Holbrook, J. A.; Miszczak, J.; Puchała, Z.; Życzkowski, K., Numerical shadow and geometry of quantum states, J. Phys. A, 44, 335301 (2011), (19 pp.) · Zbl 1226.81026
[13] Gallay, T.; Serre, D., Numerical measure of a complex matrix, Comm. Pure Appl. Math., 65, 287-336 (2012) · Zbl 1244.15015
[14] Dunkl, C. F.; Gawron, P.; Holbrook, J. A.; Puchała, Z.; Życzkowski, K., Numerical shadows: measures and densities on the numerical range, Linear Algebra Appl., 434, 2042-2080 (2011) · Zbl 1227.15019
[15] Życzkowski, K.; Choi, M.-D.; Dunkl, C.; Holbrook, J.; Gawron, P.; Miszczak, J.; Puchała, Z.; Skowronek, L., Generalized numerical range as a versatile tool to study quantum entanglement, Oberwolfach Rep., 59, 34-37 (2009)
[16] Puchała, Z.; Miszczak, J. A.; Gawron, P.; Dunkl, C. F.; Holbrook, J. A.; Życzkowski, K., Restricted numerical shadow and geometry of quantum entanglement, J. Phys. A, 45, 415309 (2012), (28 pp.) · Zbl 1258.81018
[17] Gutkin, E.; Jonckheere, E. A.; Karrow, M., Convexity of the joint numerical range: topological and differential geometric viewpoints, Linear Algebra Appl., 376, 143-171 (2004) · Zbl 1050.15026
[18] Bengtsson, I.; Życzkowski, K., Geometry of Quantum States (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1146.81004
[19] Schiff, L. I., Quantum Mechanics (1968), McGraw-Hill: McGraw-Hill New York · Zbl 0068.40202
[20] Życzkowski, K.; Sommers, H.-J., Induced measures in the space of mixed quantum states, J. Phys. A, 34, 7111-7125 (2001) · Zbl 1031.81011
[21] Brody, D. C.; Hughston, L. P., The quantum canonical ensemble, J. Math. Phys., 39, 6502-6508 (1998) · Zbl 0986.81061
[22] D.C. Brody, D.W. Hook, L. P. Hughston, Quantum phase transitions without thermodynamic limits, Proceedings of the Royal Society, London, A463, 2007, pp. 2021-2030. · Zbl 1139.82301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.