×

zbMATH — the first resource for mathematics

Sup-t-norm and inf-residuum are one type of relational product: unifying framework and consequences. (English) Zbl 1266.03056
The paper introduces and presents basic properties of a general framework to investigate relational products, which are crucial concepts in fuzzy set theory. As a consequence, the well-known sup-t-norms and inf-residuum products can be consider as particular cases of the introduced more general type of product.

MSC:
03E72 Theory of fuzzy sets, etc.
03B52 Fuzzy logic; logic of vagueness
06F05 Ordered semigroups and monoids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdel-Hamid, A.A.; Morsi, N.N., Associatively tied implications, Fuzzy sets and systems, 136, 291-311, (2003) · Zbl 1042.03021
[2] W. Bandler, L.J. Kohout, Mathematical relations, their products and generalized morphisms. Technical Report EES-MMS-REL 77-3, Man-Machine Systems Laboratory, Department of Electrical Engineering, University of Essex, Essex, Colchester, 1977.
[3] W. Bandler, L.J. Kohout, Fuzzy relational products and fuzzy implication operators, in: International Workshop of Fuzzy Reasoning Theory and Applications, London, Queen Mary College, University of London, 1978. · Zbl 0435.68042
[4] Bandler, W.; Kohout, L.J., Semantics of implication operators and fuzzy relational products, Int. J. man-machine studies, 12, 89-116, (1980) · Zbl 0435.68042
[5] Bandler, W.; Kohout, L.J., Fuzzy relational products as a tool for analysis and synthesis of the behaviour of complex natural and artificial systems, (), 341-367
[6] Bandler, W.; Kohout, L.J., On the general theory of relational morphisms, Int. J. general syst., 13, 47-66, (1986) · Zbl 0875.04002
[7] Bandler, W.; Kohout, L.J., Special properties, closures and interiors of crisp and fuzzy relations, Fuzzy sets and systems, 26, 317-331, (1988) · Zbl 0664.04001
[8] Bartl, E.; Belohlavek, R., Sup-t-norm and inf-residuum are a single type of relational equations, Int. J. general syst., 40, 599-609, (2011) · Zbl 1259.03065
[9] Behounek, L.; Dankova, M., Relational compositions in fuzzy class theory, Fuzzy sets and systems, 160, 8, 1005-1036, (2009) · Zbl 1185.03079
[10] Ben Yahia, S.; Jaoua, A., Discovering knowledge from fuzzy concept lattice, (), 167-190
[11] R. Belohlavek, Fuzzy concepts and conceptual structures: induced similarities. in: Proceedings of the JCIS 1998, vol. 1, Durham, NC, pp. 179-182.
[12] Belohlavek, R., Fuzzy Galois connections, Math. logic Q., 45, 497-504, (1999) · Zbl 0938.03079
[13] Belohlavek, R., Fuzzy relational systems: foundations and principles, (2002), Kluwer Academic, Plenum Publishers New York · Zbl 1067.03059
[14] Belohlavek, R., Concept lattices and order in fuzzy logic, Ann. pure appl. logic, 128, 1-3, 277-298, (2004) · Zbl 1060.03040
[15] R. Belohlavek, Optimal decompositions of matrices with entries from residuated lattices, J. Logic Comput., to appear. · Zbl 1195.15011
[16] R. Belohlavek, V. Vychodil, What is a fuzzy concept lattice? in: Proceedings of the CLA 2005, 3rd International Conference on Concept Lattices and their Applications, 2005, pp. 34-45.
[17] Burusco, A.; Fuentes-Gonzáles, R., The study of the L-fuzzy concept lattice, Mathware soft comput., 3, 321-327, (1996) · Zbl 0857.06005
[18] De Baets, B., Analytical solution methods for fuzzy relational equations, (), 291-340 · Zbl 0970.03044
[19] Di Nola, A.; Sanchez, E.; Pedrycz, W.; Sessa, S., Fuzzy relation equations and their applications to knowledge engineering, (1989), Kluwer · Zbl 0694.94025
[20] Ganter, B.; Wille, R., Formal concept analysis. mathematical foundations, (1999), Springer Berlin · Zbl 0909.06001
[21] G. Gediga, I. Düntsch, Modal-style operators in qualitative data analysis, in: Proceedings of the IEEE ICDM 2002, p. 155 (also as Technical Report # CS-02-15, Brock University, 15 pp.).
[22] Georgescu, G.; Popescu, A., Non-dual fuzzy connections, Arch. math. logic, 43, 1009-1039, (2004) · Zbl 1060.03042
[23] Goguen, J.A., L-fuzzy sets, J. math. anal. appl., 18, 145-174, (1967) · Zbl 0145.24404
[24] S. Gottwald, Fuzzy Sets and Fuzzy Logic. Foundations of Applications—From a Mathematical Point of View, Vieweg, Wiesbaden, 1993. · Zbl 0782.94025
[25] Gottwald, S., A treatise on many-valued logics, (2001), Research Studies Press Baldock, Hertfordshire, England · Zbl 1048.03002
[26] Hájek, P., Metamathematics of fuzzy logic, (1998), Kluwer Dordrecht · Zbl 0937.03030
[27] Höhle, U., On the fundamentals of fuzzy set theory, J. math. anal. appl., 201, 786-826, (1996) · Zbl 0860.03038
[28] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, (2000), Kluwer · Zbl 0972.03002
[29] Klir, G.J.; Yuan, B., Fuzzy sets and fuzzy logic. theory and applications, (1995), Prentice-Hall · Zbl 0915.03001
[30] Kohout, L.J.; Bandler, W., Relational-product architectures for information processing, Inf. sci., 37, 25-37, (1985)
[31] Kohout, L.J.; Kim, E., The role of BK-products of relations in soft computing, Soft comput., 6, 92-115, (2002) · Zbl 1001.68047
[32] Krajči, S., Cluster based efficient generation of fuzzy concepts, Neural network world, 5, 521-530, (2003)
[33] Krajči, S., A generalized concept lattice, Logic J. IGPL, 13, 543-550, (2005) · Zbl 1088.06005
[34] Lai, H.; Zhang, D., Concept lattices of fuzzy contexts: formal concept analysis vs. rough set theory, Int. J. approx. reason., 50, 5, 695-707, (2009) · Zbl 1191.68658
[35] Medina, J.; Ojeda-Aciego, M.; Ruiz-Claviño, J., Formal concept analysis via multi-adjoint concept lattices, Fuzzy sets and systems, 160, 130-144, (2009) · Zbl 1187.68589
[36] Morsi, N.N.; Lotfallah, W.; El-Zekey, M.S., The logic of tied implications, part 1: properties, applications and representation; part 2: syntax, Fuzzy sets and systems, 157, 647-669, (2006), 2030-2057 · Zbl 1106.03020
[37] Pollandt, S., Fuzzy begriffe, (1997), Springer-Verlag Berlin, Heidelberg · Zbl 0870.06008
[38] Sanchez, E., Resolution of composite fuzzy relation equations, Inf. control, 30, 1, 38-48, (1976) · Zbl 0326.02048
[39] Ward, M.; Dilworth, R.P., Residuated lattices, Trans. amer. math. soc., 45, 335-354, (1939) · Zbl 0021.10801
[40] Zadeh, L.A., Fuzzy sets, Inf. control, 8, 338-353, (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.