×

zbMATH — the first resource for mathematics

The atom-bond connectivity index of chemical bicyclic graphs. (English) Zbl 1265.05354
Summary: The atom-bond connectivity (ABC) index provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes, which is defined as ABC\((G) =\sum\limits_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}\), where \(d_u\) denotes the degree of a vertex \(u\) in \(G\). A chemical graph is a graph in which no vertex has degree greater than 4. In this paper, we obtain the sharp upper and lower bounds on ABC index of chemical bicyclic graphs.

MSC:
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C40 Connectivity
05C07 Vertex degrees
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M Randić. On characterization of molecular branching, J Am Chem Soc, 1975, 97: 6609–6615. · Zbl 0770.60091 · doi:10.1021/ja00856a001
[2] E Estrada. Atom-bond connectivity and the energetic of branched alkanes, Chem Phys Lett, 2008, 463: 422–425. · doi:10.1016/j.cplett.2008.08.074
[3] E Estrada, L Torres, L Rodríguez, I Gutman. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J Chem, 1998, 37A: 849–855.
[4] B Furtula, A Graovac, D Vukicevic. Atom-bond connectivity index of trees, Discrete Appl Math, 2009, 157: 2828–2835. · Zbl 1209.05252 · doi:10.1016/j.dam.2009.03.004
[5] E Estrada. Characterization of 3D molecular structure, Chem Phys Lett, 2000, 319: 713–718. · doi:10.1016/S0009-2614(00)00158-5
[6] J Liu, B Liu. A Laplacian-energy-like invariant of a graph, Match, 2008, 59: 355–372. · Zbl 1164.05044
[7] J Liu, B Liu, S Radenković, I Gutman. Minimal LEL-equienergetic graphs, Match, 2009, 61: 471–478.
[8] M Lu, L Zhang, F Tian. On the Randić index of acyclic conjugated molecules, J Math Chem, 2005, 38: 677–684. · Zbl 1096.92062 · doi:10.1007/s10910-005-6892-4
[9] G Indulal, I Gutman, A Vijaykumar. On distance energy of graphs, Match, 2008, 60: 461–472. · Zbl 1199.05226
[10] I Gutman, D Kiani, M Mirzakhah, B Zhou. On incidence energy of a graph, Linear Algebra Appl, 2009, 431: 1223–1233. · Zbl 1175.05084 · doi:10.1016/j.laa.2009.04.019
[11] I Gutman, D Vidović, A Nedić. Ordering of alkane isomersby means of connectivity indices, J Serb Chem Soc, 2002, 67: 87–97. · doi:10.2298/JSC0202087G
[12] L Clark, I Gutman. The exponent in the general Randić index, J Math Chem, 2008, 43: 32–34. · Zbl 1147.05302 · doi:10.1007/s10910-006-9177-7
[13] B Zhou, R Xing. On atom-bond connectivity index, Z Naturforsch, 2011, 66a: 61–66. · Zbl 1228.05199 · doi:10.5560/ZNA.2011.66a0061
[14] J Chen, J Liu. On atom-bond connectivity index of bicyclic graphs, J Guangxi Teachers Education Univ, 2011, 28: 8–12.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.