×

zbMATH — the first resource for mathematics

Comment on “Quantum secure direct communication with authentication expansion using single photons”. (English) Zbl 1264.81155
Summary: The security of the quantum secure direct communication protocol with authentication expansion using single photons is analyzed. It is shown that an eavesdropper can obtain or even modify the transmitted secret without introducing any error by implementing a simple man-in-the-middle attack after the authentication is successfully carried out. Furthermore, a denial-of-service attack is also discussed. The particular attack strategy is demonstrated and an improved protocol is presented.
(Concerns [J. Yang et al., Commun. Theor. Phys. 54, No. 5, 829–834 (2010; Zbl 1220.81073)].

MSC:
81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
81P15 Quantum measurement theory, state operations, state preparations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984) · Zbl 1306.81030
[2] Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[3] Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992) · Zbl 0969.94501 · doi:10.1103/PhysRevLett.68.3121
[4] Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002) · doi:10.1103/PhysRevLett.89.187902
[5] Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)
[6] Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)
[7] Wang, T.-Y., Wen, Q.-Y., Zhu, F.-C.: Multiparty controlled quantum secure direct communication with phase encryption. Int. J. Quant. Inform. 9(2), 801–807 (2011) · Zbl 1219.81086 · doi:10.1142/S0219749911007733
[8] Yang, Y.-G., Wen, Q.-Y.: Threshold quantum secure direct communication without entanglement. Sci. China Ser. G, Phys. Astron. 51(2), 176–183 (2008) · Zbl 1140.94013 · doi:10.1007/s11433-008-0028-3
[9] Cao, W.-F., Yang, Y.-G., Wen, Q.-Y.: Quantum secure direct communication with cluster states. Sci. China Ser. G, Phys. Astron. 53(7), 1271–1275 (2010) · doi:10.1007/s11433-010-3210-3
[10] Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[11] Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999) · doi:10.1103/PhysRevA.59.162
[12] Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247–251 (2003) · Zbl 1042.81521 · doi:10.1016/S0375-9601(03)00074-4
[13] Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)
[14] Lin, S., Wen, Q.Y., Qin, S.J., et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009) · doi:10.1016/j.optcom.2009.07.053
[15] Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373, 65–68 (2008) · Zbl 1227.81148 · doi:10.1016/j.physleta.2008.11.004
[16] Li, B.-K., Yang, Y.-G., Wen, Q.-Y.: Threshold quantum secret sharing of secure direct communication. Chin. Phys. Lett. 26(1), 010302 (2009)
[17] Yang, Y.-G., Wang, Y., Chai, H.-P., Teng, Y.-W., Zhang, H.: Member expansion in quantum (t,n) threshold secret sharing schemes. Opt. Commun. 284(13), 3479–3482 (2011) · doi:10.1016/j.optcom.2011.03.017
[18] Yang, Y.-G., Wang, Y., Teng, Y.-W., Wen, Q.-Y.: Universal three-party quantum secret sharing against collective noise. Commun. Theor. Phys. 55(4), 589–593 (2011) · Zbl 1264.81158 · doi:10.1088/0253-6102/55/4/11
[19] Yang, Y.-G., Chai, H.-P., Wang, Y., Teng, Y.-W., Wen, Q.-Y.: Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci. China Ser. G, Phys. Astron. 54(9), 1619–1624 (2011) · doi:10.1007/s11433-011-4432-8
[20] Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Verifiable quantum (k,n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011) · Zbl 1209.81142 · doi:10.1007/s10773-010-0616-7
[21] Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Fault tolerant quantum secret sharing against collective noise. Phys. Scr. 83(2), 025003 (2011) · Zbl 1219.81087
[22] Yang, Y.-G., Wen, Q.-Y.: Comment on: ”Efficient high-capacity quantum secret sharing with two-photon entanglement” [Phys. Lett. A 372, 1957 (2008)]. Phys. Lett. A 373(3), 396–398 (2009) · Zbl 1227.81149 · doi:10.1016/j.physleta.2008.10.055
[23] Yang, Y.-G., Wen, Q.-Y.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum Inf. 7(6), 1249–1254 (2009) · Zbl 1175.81082 · doi:10.1142/S0219749909005717
[24] Sun, Y., Wen, Q.Y., Zhu, F.C.: Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt. Commun. 283, 181–183 (2010) · doi:10.1016/j.optcom.2009.08.063
[25] Lin, S., Wen, Q.Y., Gao, F., Qin, S.J., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553–4554 (2008) · doi:10.1016/j.optcom.2008.05.026
[26] Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: A special attack on the multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 5472–5474 (2008) · doi:10.1016/j.optcom.2008.07.052
[27] Sun, Y., Wen, Q.Y., Gao, F.: Multiparty quantum secret sharing based on bell measurement. Opt. Commun. 282, 3647–3651 (2009) · doi:10.1016/j.optcom.2009.05.054
[28] Dušek, M., Haderka, O., Hendrych, M., et al.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999) · doi:10.1103/PhysRevA.60.149
[29] Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001) · doi:10.1103/PhysRevA.64.062309
[30] Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000) · doi:10.1103/PhysRevA.62.022305
[31] Zhang, Z.S., Zeng, G.H., Zhou, N.R., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A 356, 199–205 (2006) · Zbl 1160.81358 · doi:10.1016/j.physleta.2006.03.048
[32] Yang, Y.-G., Wen, Q.-Y.: Economical multiparty simultaneous quantum identity authentication based on Greenberger–Horne–Zeilinger states. Chin. Phys. B 18(8), 3233–3236 (2009) · doi:10.1088/1674-1056/18/8/023
[33] Yang, Y.-G., Wen, Q.-Y.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Ser. G, Phys. Astron. 51(3), 321–327 (2008) · Zbl 1137.81321 · doi:10.1007/s11433-008-0034-5
[34] Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on ”Experimental demonstration of a quantum protocol for Byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)
[35] Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on ”Quantum key distribution without alternative measurements” [Phys. Rev. A 61, 052312 (2000)]. Phys. Rev. A 63, 036301 (2001) · doi:10.1146/annurev.physiol.63.1.1
[36] Gao, F., Qin, S., Wen, Q., Zhu, F.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329–334 (2007) · Zbl 1152.81716
[37] Gao, F., Wen, Q., Zhu, F.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189–3193 (2008) · doi:10.1088/1674-1056/17/9/006
[38] Gao, F., Qin, S., Guo, F., Wen, Q.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630–635 (2011) · doi:10.1109/JQE.2011.2107889
[39] Hao, L., Li, J.L., Long, G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Ser. G, Phys. Mech. Astron. 53, 491–495 (2010) · doi:10.1007/s11433-010-0145-7
[40] Qin, S., Gao, F., Wen, Q., Zhu, F.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006) · Zbl 1236.81077 · doi:10.1016/j.physleta.2006.04.030
[41] Wójcik, A.: Eavesdropping on the ”ping-pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)
[42] Wójcik, A.: Comment on ”Quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005) · doi:10.1103/PhysRevA.71.016301
[43] Cai, Q.Y.: The ”ping-pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003) · doi:10.1103/PhysRevLett.91.109801
[44] Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)
[45] Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: ”Quantum exam” [Phys. Lett. A 350, 174 (2006)]. Phys. Lett. A 360, 748–750 (2007) · Zbl 05322044 · doi:10.1016/j.physleta.2006.08.016
[46] Gao, F., Lin, S., Wen, Q.Y., Zhu, F.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561–1563 (2008) · doi:10.1088/0256-307X/25/5/011
[47] Gao, F., Qin, S., Wen, Q., Zhu, F.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192–195 (2010) · doi:10.1016/j.optcom.2009.09.047
[48] Yang, Y.-G., Naseri, M., Wen, Q.-Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009) · doi:10.1016/j.optcom.2009.07.010
[49] Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Revisiting the security of secure direct communication based on ping-pong protocol [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inf. Process. 10(3), 317-323 (2011) · Zbl 1216.81060 · doi:10.1007/s11128-010-0199-5
[50] Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006) · doi:10.1103/PhysRevA.73.022320
[51] Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)
[52] Yang, Y.-G., Chai, H.-P., Teng, Y.-W., Wen, Q.-Y.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50, 395–400 (2011) · Zbl 1209.81088 · doi:10.1007/s10773-010-0543-7
[53] Gao, F., Qin, S.-J., Guo, F.Z., Wen, Q.-Y.: Cryptanalysis of quantum secure direct communication and authentication scheme via Bell states. Chin. Phys. Lett. 28, 020303 (2011)
[54] Yang, J., Wang, C., Zhang, R.: Quantum secure direct communication with authentication expansion using single photons. Commun. Theor. Phys. 54, 829–834 (2010) · Zbl 1220.81073 · doi:10.1088/0253-6102/54/5/10
[55] Wei, T.-S., Tsai, C.-W., Hwang, T.: Comment on ”Quantum key distribution and quantum authentication based on entangled state”. Int. J. Theor. Phys. 50(9), 2703–2707 (2011) · Zbl 1238.81089 · doi:10.1007/s10773-011-0768-0
[56] Zhang, Z.-J., Liu, J., Wang, D., Shi, S.-H.: Comment on ”Quantum direct communication with authentication”. Phys. Rev. A 75, 026301 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.