# zbMATH — the first resource for mathematics

Independence and 2-monotonicity: nice to have, hard to keep. (English) Zbl 1264.68173
Summary: In imprecise probability theories, independence modeling and computational tractability are two important issues. The former is essential to work with multiple variables and multivariate spaces, while the latter is essential in practical applications. When using lower probabilities to model uncertainty about the value assumed by a variable, satisfying the property of 2-monotonicity decreases the computational burden of inference, hence answering the latter issue. In a first part, this paper investigates whether the joint uncertainty obtained by main existing notions of independence preserve the 2-monotonicity of marginal models. It is shown that it is usually not the case, except for the formal extension of random set independence to 2-monotone lower probabilities. The second part of the paper explores the properties and interests of this extension within the setting of lower probabilities.

##### MSC:
 68T37 Reasoning under uncertainty in the context of artificial intelligence 68T27 Logic in artificial intelligence
Full Text:
##### References:
 [1] A. Bronevich, T. Augustin, Approximation of coherent lower probabilities by 2-monotone measures, in: ISIPTA’09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, SIPTA, 2009, pp. 61-70. [2] Chateauneuf, A.; Jaffray, J.-Y., Some characterizations of lower probabilities and other monotone capacities through the use of mobius inversion, Math. Social Sci., 17, 3, 263-283, (1989) · Zbl 0669.90003 [3] Cooman, G. D.; Miranda, E., Weak and strong laws of large numbers for coherent lower previsions, J. Stat. Plann. Infer., 138, 8, 2409-2432, (2008) · Zbl 1176.60017 [4] Couso, I.; Moral, S.; Walley, P., A survey of concepts of independence for imprecise probabilities, Risk Decis. Policy, 5, 165-181, (2000) [5] de Campos, L.; Huete, J.; Moral, S., Probability intervals: a tool for uncertain reasoning, Int. J. Uncert., Fuzz. Knowl. Syst., 2, 167-196, (1994) · Zbl 1232.68153 [6] de Cooman, G.; Hermans, F.; Antonucci, A.; Zaffalon, M., Epistemic irrelevance in credal nets: the case of imprecisemarkov trees, Int. J. Approx. Reason., 51, 9, 1029-1052, (2010) · Zbl 1348.68248 [7] de Cooman, G.; Miranda, E., Forward irrelevance, J. Stat. Plan. Infer., 139, 256-276, (2009) · Zbl 1181.60009 [8] de Cooman, G.; Miranda, E.; Zaffalon, M., Independent natural extension, Artif. Intell., 175, 12-13, 1911-1950, (2011) · Zbl 1234.68380 [9] Dempster, A., Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat., 38, 325-339, (1967) · Zbl 0168.17501 [10] S. Destercke, Independence and 2-monotonicity: Nice to have, hard to keep, in: ECSQARU, 2011, pp. 263-274. · Zbl 1341.68248 [11] Destercke, S.; Dubois, D.; Chojnacki, E., Unifying practical uncertainty representations: I generalized p-boxes, Int. J. Approx. Reason., 49, 649-663, (2008) · Zbl 1184.68503 [12] Destercke, S.; Dubois, D.; Chojnacki, E., A consonant approximation of the product of independent consonant random sets, Int. J. Uncert., Fuzz. Knowl. Syst., 17, 6, 773-792, (2009) · Zbl 1185.68706 [13] Dubois, D.; Prade, H., Possibility theory: an approach to computerized processing of uncertainty, (1988), Plenum Press New York [14] S. Ferson, L. Ginzburg, V. Kreinovich, D. Myers, K. Sentz, Constructing probability boxes and dempster-shafer structures, Technical report, Sandia National Laboratories, 2003. [15] Fetz, T.; Oberguggenberger, M., Propagation of uncertainty through multivariate functions in the framework of sets of probability measures, Reliab. Eng. Syst. Saf., 85, 73-87, (2004) [16] Finetti, B., Theory of Probability, vol. 1-2, (1974), Wiley NY, Translation of 1970 book [17] Gilboa, I.; Schmeidler, D., Updating ambiguous beliefs, J. Econ. Theory, 59, 33-49, (1993) · Zbl 0780.90001 [18] Huber, P. J.; Strassen, V., Minimax tests and the neyman – pearson lemma for capacities, Ann. Stat., 1, 2, 251-263, (1973) · Zbl 0259.62008 [19] Li, S.; Ogura, Y.; Kreinovich, V., Limit theorems and applications of set-valued and fuzzy set-valued random, (2002), Springer · Zbl 1348.60003 [20] Miranda, E., A survey of the theory of coherent lower previsions, Int. J. Approx. Reason., 48, 628-658, (2008) · Zbl 1184.68519 [21] Miranda, E.; Couso, I.; Gil, P., Extreme points of credal sets generated by 2-alternating capacities, Int. J. Approx. Reason., 33, 95-115, (2003) · Zbl 1029.68135 [22] Pelessoni, R.; Vicig, P.; Zaffalon, M., Inference and risk measurement with the pari-mutuel model, Int. J. Approx. Reason., 51, 9, 1145-1158, (2010) · Zbl 1237.91136 [23] Piatti, A.; Antonucci, A.; Zaffalon, M., Building knowledge-based systems by credal networks: a tutorial, Adv. Math. Res., 11, 227-279, (2010) [24] Quaeghebeur, E.; Cooman, G. D., Extreme lower probabilities, Fuzzy Sets Syst., 159, 2175-2193, (2008) · Zbl 1171.60304 [25] Sallak, M.; Schön, W.; Aguirre, F., Transferable belief model for reliability analysis of systems with data uncertainties and failure dependencies, Proc. Inst. Mech. Eng. O: J. Risk Reliab., 224, 4, 266-278, (2010) [26] Shafer, G., A mathematical theory of evidence, (1976), Princeton University Press New Jersey · Zbl 0359.62002 [27] P. Smets, The canonical decomposition of a weighted belief, in: Proceedings of International Joint Conference on Artificial Intelligence, Montreal, 1995, pp. 1896-1901. [28] Troffaes, M. C.M.; Destercke, S., Probability boxes on totally preordered spaces for multivariate modelling, Int. J. Approx. Reason., 52, 6, 767-791, (2011) · Zbl 1235.60006 [29] Vicig, P., Epistemic independence for imprecise probabilities, Int. J. Approx. Reason., 24, 235-250, (2000) · Zbl 0995.68121 [30] P. Walley, Coherent lower (and upper) probabilities, Technical report, University of Warwick, Department of Statistics, Warwick, 1981. [31] Walley, P., Statistical reasoning with imprecise probabilities, (1991), Chapman and Hall New York · Zbl 0732.62004 [32] Walley, P., Measures of uncertainty in expert systems, Art. Intell., 83, 1-58, (1996) [33] Williams, P. M., Notes on conditional previsions, Int. J. Approx. Reason., 44, 366-383, (2007) · Zbl 1114.60005 [34] Xu, H.; Smets, P., Reasoning in evidential networks with conditional belief functions, Int. J. Approx. Reason., 14, 2-3, 155-185, (1996) · Zbl 0941.68764
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.