zbMATH — the first resource for mathematics

Permutation tests for multiple changes. (English) Zbl 1264.62038
Summary: Approximations to the critical values of tests for multiple changes in location models are obtained through the permutation tests principle. Theoretical results prove that the approximations based on the limit distributions and the permutation distributions of the test statistics behave in the same way in the limit. However, the results of a simulation study show that the permutation tests behave considerably better than the corresponding tests based on the asymptotic critical values.

62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
65C60 Computational problems in statistics (MSC2010)
Full Text: Link EuDML
[1] Antoch J., Hušková M.: Tests and estimators for epidemic alternatives. Tatra Mountains Mathematical Publications (A. Pázman and V. Witkovský, 1996, vol. 7, pp. 311-330 · Zbl 0919.62036
[2] Antoch J., Hušková, M., Jarušková D.: Change point detection. Lecture Notes of the 5th IASC Summer School (Lauro et al, ISI, Voorburg 2000, pp. 1-75
[3] Antoch J., Hušková M.: Permutation tests for change point analysis. Statist. Probab. Lett. 53 (2001), 37-46 · Zbl 0980.62033
[4] Csörgő M., Révész P.: Strong Approximations in Probability and Statistics. Academic Press, New York 1981 · Zbl 0539.60029
[5] Csörgő M., Horváth L.: Limit Theorems in Change-point Analysis. Wiley, New York 1997 · Zbl 0884.62023
[6] Good P.: Permutation Tests. Second edition. Springer-Verlag, New York 2000 · Zbl 0942.62049
[7] Einmahl U.: A useful estimate in the multidimensional invariance principle. Probab. Theory Related Fields 76 (1987), 81-101 · Zbl 0608.60029
[8] Grabovsky I., Horváth, L., Hušková M.: Limit theorems for kernel-type estimators for the time of change. J. Statist. Plann. Inference 89 (2000), 25-56 · Zbl 0998.62047
[9] Horváth L.: Detecting changes in linear regressions. Statistics 26 (1995), 189-208 · Zbl 0812.62074
[10] Horváth L., Kokoszka P.: Change-point Detection with Non-parametric Regression. Report No. 313, Laboratory for Research in Statistics and Probability, Carlton University 1997 · Zbl 1010.62036
[11] Hušková M.: Limit theorems for rank statistics. Statist. Probab. Lett. 32 (1997), 45-55 · Zbl 0933.62039
[12] Lehmann E. L.: Theory of Point Estimation. Wadworth & Brooks/Cole, Calif. 1991 · Zbl 0916.62017
[13] Leadbetter M. R., Lindgren, L., Rootzen H.: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York 1983 · Zbl 0518.60021
[14] Romano J. P.: Bootstrap and randomization tests of some nonparametric hypotheses. Ann. Statist. 17 (1989), 141-159 · Zbl 0688.62031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.