×

zbMATH — the first resource for mathematics

Global exact controllability in infinite time of Schrödinger equation. (English. French summary) Zbl 1263.93038
Summary: We study the problem of controllability of Schrödinger equation. We prove that the system is exactly controllable in infinite time to any position. The proof is based on an inverse mapping theorem for multivalued functions. We show also that the system is not exactly controllable in finite time in lower Sobolev spaces.

MSC:
93B05 Controllability
93C20 Control/observation systems governed by partial differential equations
35Q41 Time-dependent Schrödinger equations and Dirac equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agrachev, A.; Chambrion, T., An estimation of the controllability time for single-input systems on compact Lie groups, ESAIM control optim. calc. var., 12, 3, 409-441, (2006) · Zbl 1106.93006
[2] Albertini, F.; DʼAlessandro, D., Notions of controllability for bilinear multilevel quantum systems, IEEE trans. automat. control, 48, 8, 1399-1403, (2003) · Zbl 1364.93059
[3] Altafini, C., Controllability of quantum mechanical systems by root space decomposition of \(\mathit{su}(n)\), J. math. phys., 43, 5, 2051-2062, (2002) · Zbl 1059.93016
[4] Ball, J.M.; Marsden, J.E.; Slemrod, M., Controllability for distributed bilinear systems, SIAM J. control optim., 20, 4, 575-597, (1982) · Zbl 0485.93015
[5] Baudouin, L.; Puel, J.-P., Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse problems, 18, 6, 1537-1554, (2001) · Zbl 1023.35091
[6] Beauchard, K., Local controllability of a 1D Schrödinger equation, J. math. pures appl., 84, 7, 851-956, (2005) · Zbl 1124.93009
[7] Beauchard, K.; Chitour, Y.; Kateb, D.; Long, R., Spectral controllability of 2D and 3D linear Schrödinger equations, J. funct. anal., 256, 3916-3976, (2009) · Zbl 1191.35222
[8] Beauchard, K.; Coron, J.-M., Controllability of a quantum particle in a moving potential well, J. funct. anal., 232, 2, 328-389, (2006) · Zbl 1188.93017
[9] Beauchard, K.; Coron, J.-M.; Mirrahimi, M.; Rouchon, P., Implicit Lyapunov control of finite dimensional Schrödinger equations, Syst. contr. lett., 56, 5, 388-395, (2007) · Zbl 1110.81063
[10] K. Beauchard, C. Laurent, Local controllability of linear and nonlinear Schrödinger equations with bilinear control, Preprint, 2010.
[11] Cazenave, T., Semilinear Schrödinger equations, Courant lecture notes in mathematics, vol. 10, (2003), AMS · Zbl 1055.35003
[12] Chambrion, T.; Mason, P.; Sigalotti, M.; Boscain, U., Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. IHP anal. non lin., 26, 1, 329-349, (2009) · Zbl 1161.35049
[13] Dehman, B.; Gérard, P.; Lebeau, G., Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z., 254, 4, 729-749, (2006) · Zbl 1127.93015
[14] Edmunds, D.E.; Triebel, H., Function spaces, entropy numbers, differential operators, (1996), Cambridge University Press Cambridge · Zbl 0778.46022
[15] Ervedoza, S.; Puel, J.-P., Approximate controllability for a system of Schrödinger equations modeling a single trapped ion, Ann. IHP anal. non lin., 26, 6, 2111-2136, (2009) · Zbl 1180.35437
[16] Katok, A.; Hasselblatt, B., Introduction to the modern theory of dynamical systems, Encyclopedia of mathematics and its applications, vol. 54, (1995), Cambridge University Press Cambridge · Zbl 0878.58020
[17] Lebeau, G., Contrôle de lʼéquation de Schrödinger, J. math. pures appl., 71, 3, 267-291, (1992) · Zbl 0838.35013
[18] Machtyngier, E.; Zuazua, E., Stabilization of the Schrödinger equation, Portugaliae math., 51, 2, 243-256, (1994) · Zbl 0814.35008
[19] Mason, P.; Sigalotti, M., Generic controllability properties for the bilinear Schrödinger equation, Comm. in PDE, 35, 4, 685-706, (2010) · Zbl 1193.35166
[20] M. Mirrahimi, Lyapunov control of a particle in a finite quantum potential well, in: IEEE Conf. on Decision and Control, San Diego, 2006.
[21] Nachi, K.; Penot, J.-P., Inversion of multifunctions and differential inclusions, Control cybernet., 34, 3, 871-901, (2005) · Zbl 1158.47316
[22] Nersesyan, V., Growth of Sobolev norms and controllability of the Schrödinger equation, Comm. math. phys., 290, 1, 371-387, (2009) · Zbl 1180.93017
[23] Nersesyan, V., Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. IHP anal. non lin., 27, 3, 901-915, (2010) · Zbl 1191.35257
[24] Nersisyan, H., Controllability of 3D incompressible Euler equations by a finite-dimensional external force, Esaim: cocv, 16, 677-694, (2010) · Zbl 1193.35141
[25] Pöschel, J.; Trubowitz, E., Inverse spectral theory, (1987), Academic Press New York · Zbl 0623.34001
[26] Y. Privat, M. Sigalotti, The squares of Laplacian-Dirichlet eigenfunctions are generically linearly independent, Preprint, 2008. · Zbl 1206.35181
[27] Ramakrishna, V.; Salapaka, M.; Dahleh, M.; Rabitz, H.; Pierce, A., Controllability of molecular systems, Phys. rev. A, 51, 2, 960-966, (1995)
[28] Shirikyan, A., Euler equations are not exactly controllable by a finite-dimensional external force, Physica D, 237, 1317-1323, (2008) · Zbl 1143.76393
[29] Turinici, G., On the controllability of bilinear quantum systems, Lecture notes in chem., vol. 74, (2000)
[30] Turinici, G.; Rabitz, H., Quantum wavefunction controllability, Chem. phys., 267, 1, 1-9, (2001)
[31] Zuazua, E., Remarks on the controllability of the Schrödinger equation, CRM proc. lecture notes, 33, 193-211, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.