×

Cosmological consequences of the holographic scenario. (English) Zbl 1263.83179

Summary: In this paper we discuss some consequences of Verlinde’s holographic gravity model. Among other things, it yields the observed acceleration of the universe and the inflationary period at early universe obviating the dark energy. From the Verlinde’s theory of gravity the first phenomenological modified Newtonian dynamics obviating the dark matter can be deduced. Moreover through the connection with the modification of inertia resulting from a Hubble-scale Casimir effect (MiHsC) of McCulloch the model gives a promising possible explanation to the Pioneer anomaly, the flyby anomalies, the Tajmar effect and the minimum mass observed in the disc galaxies.

MSC:

83F05 Relativistic cosmology
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arakida, H.: Time delay in Robertson McVittie spacetime and its application to increase of astronomical unit. New Astron. 14(3), 264–268 (2009) · doi:10.1016/j.newast.2008.08.010
[2] Arakida, H.: Application of time transfer function to McVittie spacetime: gravitational time delay and secular increase in astronomical unit. Gen. Relativ. Gravit. 43(8), 2127–2139 (2011) · Zbl 1225.85001 · doi:10.1007/s10714-011-1170-1
[3] Anderson, J.D., Campbell, J.K., Ekelund, J.E., Ellis, J., Jordan, J.F.: Anomalous Orbital-Energy changes observed during spacecraft flybys of earth. Phys. Rev. Lett. 100(9), 091102 (2008). 2008
[4] Anderson, J.D., Campbell, J.K., Nieto, M.M.: The energy transfer process in planetary flybys. New Astron. 12, 383–397 (2007) · doi:10.1016/j.newast.2006.11.004
[5] Anderson, J.D., Liang, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Indication, from pioneer 10/11, Galileo and Ulysses data, of an apparent weak anomalous, long-range acceleration. Phys. Rev. Lett. 81, 2858–2861 (1998) · doi:10.1103/PhysRevLett.81.2858
[6] Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.N., Turyshev, S.G.: Study of the anomalous acceleration of pioneer 10 and 11. Phys. Rev. D 65(8), 082004 (2002) · Zbl 1049.70578 · doi:10.1103/PhysRevD.65.082004
[7] Anderson, J.D., Nieto, M.M.: Astrometric solar-system anomalies. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Proc. IAU Symp. 261, Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, pp. 189–197. Cambridge Univ. Press, Cambridge (2010)
[8] Antreasian, P.G., Guinn, J.R.: Investigation into the unexpected delta-v increases during the earth gravity assists of Galileo and NEAR. In: AIAA/AAS Astrodynamics Specialist Conf. and Exhibition, Boston (1998). Paper no. 98-4287
[9] Assis, A.K.T.: On Mach’s principle. Found. Phys. Lett. 2, 301–318 (1989) · doi:10.1007/BF00690297
[10] Assis, A.K.T.: Relational Mechanics, Apeiron, Montreal (1999)
[11] Bekenstein, J.D.: Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509 (2004)
[12] Bertolami, O., Francisco, F., Gil, P.J.S., Páramos, J.: Thermal analysis of the pioneer anomaly: a method to estimate radiative momentum transfer. Phys. Rev. D 78(10), 103001 (2008)
[13] Bertolami, O., Francisco, F., Gil, P.J.S., Páramos, J.: Estimating radiative momentum transfer through a thermal analysis of the pioneer anomaly. Space Sci. Rev. 151(1–3), 75–91 (2010) · doi:10.1007/s11214-009-9589-3
[14] Blanchet, L., Novak, J.: External field effect of modified newtonian dynamics in the solar system. Mon. Not. R. Astron. Soc. 412(4), 2530–2542 (2011) · doi:10.1111/j.1365-2966.2010.18076.x
[15] Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124(3), 925–935 (1961) · Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[16] Dicke, R.H.: Experimental tests of Mach’s principle. Phys. Rev. Lett. 7, 359–360 (1961) · Zbl 0103.44705 · doi:10.1103/PhysRevLett.7.359
[17] Easson, D.A., Frampton, P.H., Smoot, G.F.: Entropic accelerating universe. Phys. Lett. B 696(3), 273–277 (2011) · doi:10.1016/j.physletb.2010.12.025
[18] Easson, D.A., Frampton, P.H., Smoot, G.F.: Entropic inflation. Int. J. Mod. Phys. A 27(12), 1250066 (2012) · Zbl 1247.83258 · doi:10.1142/S0217751X12500662
[19] Famaey, B., McGaugh, S.: Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions (2012). Invited review for Living Rev. Relativ. arXiv:1112.3960
[20] Fienga, A.: Planetary ephemerides and gravity tests in the solar system. In: Augé, E., Dumarchez, J., Van Tran Thanh, J. (eds.) 2011 Gravitational Waves and Experimental Gravity, pp. 233–240. Gioi, Hanoi (2011)
[21] Fienga, A., Laskar, J., Kuchynka, P., Leponcin-Lafitte, C., Manche, H., Gastineau, M.: Gravity tests with INPOP planetary ephemerides. In: Klioner, S.A., Seidelman, P.K., Soffel, M.H. (eds.) Relativity in Fundamental Astronomy. Proceedings IAU Symposium, vol. 261, pp. 159–169 (2010)
[22] Francisco, F., Bertolami, O., Gil, P.J.S., Páramos, J.: Modelling the reflective thermal contribution to the acceleration of the pioneer spacecraft. Phys. Lett. B 711(5), 337–346 (2012) · doi:10.1016/j.physletb.2012.04.034
[23] Cai, Y.-F., Liu, J., Li, H.: Entropic cosmology: a unified model of inflation and late-time acceleration. Phys. Lett. B 690(3), 213–219 (2010) · doi:10.1016/j.physletb.2010.05.033
[24] Funkhouser, S.: Non-Newtonian second law of motion from entropic dynamics in an asymptotically de Sitter space. Preprint arXiv:1009.5126 (2010)
[25] Giné, J.: On the origin of the inertia: the modified Newtonian dynamics theory. Chaos Solitons Fractals 41, 1651–1660 (2009) · Zbl 1198.70006 · doi:10.1016/j.chaos.2008.07.008
[26] Giné, J.: On the origin of the inertial force and gravitation. Int. J. Theor. Phys. 50(2), 607–617 (2011) · Zbl 1208.83089 · doi:10.1007/s10773-010-0581-1
[27] Giné, J.: The phenomenological version of modified Newtonian dynamics from the relativity principle of motion. Phys. Scr. 85(2), 025011 (2012) · Zbl 1356.70001
[28] Giné, J.: The pioneer anomaly and the holographic scenario. Astrophys. Space Sci. 337(1), 483–486 (2012) · Zbl 1238.85037 · doi:10.1007/s10509-011-0840-5
[29] Giné, J.: Towards a quantum universe. Astrophys. Space Sci. 339(1), 25–30 (2012) · doi:10.1007/s10509-012-0978-9
[30] Giné, J.: Towards a fractal universe. Adv. Stud. Theor. Phys. 6(10), 485–496 (2012) · Zbl 1253.83050
[31] Giné, J.: The holographic scenario and the dynamics of the universe. Preprint, Universitat de Lleida, Spain (2011)
[32] Iorio, L.: Secular increase of the astronomical unit and perihelion precessions as tests of the Dvali-Gabadadze-Porrati multi-dimensional braneworld scenario. J. Cosmol. Astropart. Phys. 09, 006 (2005) · Zbl 1236.83011
[33] Iorio, L.: Can the pioneer anomaly be of gravitational origin? A phenomenological answer. Found. Phys. 37(6), 897–918 (2007) · Zbl 1125.70021 · doi:10.1007/s10701-007-9132-x
[34] Iorio, L.: Jupiter, Saturn and the pioneer anomaly: a planetary-based independent test. J. Gravit. Phys. 1(1), 5–8 (2007)
[35] Iorio, L.: The Lense-Thirring effect and the pioneer anomaly: solar system tests. In: Kleinert, H., Jantzen, R.T., Ruffini, R. (eds.) Proceedings of the 11th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theorie, pp. 2558–2560. World Scientific, Singapore (2008)
[36] Iorio, L.: Constraining MOND with solar system dynamics. J. Gravit. Phys. 2(1), 26 (2008)
[37] Iorio, L.: On the MOND external field effect in the solar system. Astrophys. Space Sci. 323(3), 215–219 (2009) · Zbl 1178.85002 · doi:10.1007/s10509-009-0061-3
[38] Iorio, L.: The recently determined anomalous perihelion precession of Saturn. Astron. J. 137, 3615–3618 (2009) · doi:10.1088/0004-6256/137/3/3615
[39] Iorio, L.: MOND orbits in the Oort cloud. Open Astron. J. 3, 156–166 (2010) · doi:10.2174/1874381101003010156
[40] Iorio, L.: Does the Neptunian system of satellites challenge a gravitational origin for the pioneer anomaly. Mon. Not. R. Astron. Soc. 405(4), 2615–2622 (2010)
[41] Iorio, L.: The perihelion precession of Saturn, planet X/Nemesis and MOND. Open Astron. J. 3, 1–6 (2010) · doi:10.2174/1874381101003010001
[42] Iorio, L.: On the anomalous secular increase of the eccentricity of the orbit of the moon, monthly notices Roy. Astron. Soc. 415, 1266–1275 (2011) · doi:10.1111/j.1365-2966.2011.18777.x
[43] Iorio, L.: An empirical explanation of the anomalous increases in the astronomical unit and the lunar eccentricity. Astron. J. 142(3), 68 (2011) · doi:10.1088/0004-6256/142/3/68
[44] Iorio, L.: Constraints on the location of a putative distant massive body in the solar system and on the external field effect of MOND from recent planetary data. Celest. Mech. Dyn. Astron. 112, 117–130 (2012) · doi:10.1007/s10569-011-9386-7
[45] Iorio, L.: Orbital effects of the time-dependent component of the pioneer anomaly. Mod. Phys. Lett. A 27(12), 1250071 (2012) · Zbl 1274.70048 · doi:10.1142/S021773231250071X
[46] Iorio, L., Giudice, G.: What do the orbital motions of the outer planets of the solar system tell us about the pioneer anomaly? New Astron. 11(8), 600–607 (2006) · doi:10.1016/j.newast.2006.04.001
[47] Itoh, Y.: Tidal mechanism as an impossible cause of the observed secular increase of the astronomical unit. Publ. Astron. Soc. Jpn. 61, 1373–1374 (2009)
[48] Klinkhamer, F.R.: Entropic-gravity derivation of MOND. Mod. Phys. Lett. A 27(11), 1250056 (2012) · Zbl 1260.85015
[49] Klinkhamer, F.R., Kopp, M.: Entropic gravity, minimum temperature, and modified Newtonian dynamics. Mod. Phys. Lett. A 26(37), 2783–2791 (2011) · Zbl 1274.83114 · doi:10.1142/S021773231103711X
[50] Krasinsky, G.A., Brumberg, V.A.: Secular increase of astronomical unit from analysis of the major planet motions, and its interpretation. Celest. Mech. Dyn. Astron. 90, 267–288 (2004) · Zbl 1091.70006 · doi:10.1007/s10569-004-0633-z
[51] Li, X., Chang, Z.: Debye entropic force and modified Newtonian dynamics. Commun. Theor. Phys. 55(4), 733–736 (2011) · Zbl 1264.85008 · doi:10.1088/0253-6102/55/4/41
[52] McCulloch, M.E.: Modelling the pioneer anomaly as modified inertia. Mon. Not. R. Astron. Soc. 376, 338–342 (2007) · doi:10.1111/j.1365-2966.2007.11433.x
[53] McCulloch, M.E.: Can the flyby anomalies be explained by a modification of inertia? J. Br. Interplanet. Soc. 61, 373–378 (2008)
[54] McCulloch, M.E.: Modelling the flyby anomalies using a modification of inertia. Mon. Not. R. Astron. Soc. Lett. 389, L57–L60 (2008) · doi:10.1111/j.1745-3933.2008.00523.x
[55] McCulloch, M.E.: Can the Tajmar effect be explained using a modification of inertia. Europhys. Lett. 89(1), 19001 (2010) · doi:10.1209/0295-5075/89/19001
[56] McCulloch, M.E.: Minimum accelerations from quantised inertia. Europhys. Lett. 90(2), 29001 (2010) · doi:10.1209/0295-5075/90/29001
[57] McCulloch, M.E.: The Tajmar effect from quantised inertia. Europhys. Lett. 95(3), 39002 (2011) · doi:10.1209/0295-5075/95/39002
[58] McCulloch, M.E.: Testing quantised inertia on galactic scales. Preprint (2012)
[59] McGaugh, S.S.: Modified Newtonian dynamics close to home (reply). Sci. Lett. 318, 568–570 (2007)
[60] McGaugh, S.S., Schombert, J.M., de Blok, W.J.G., Zagursky, M.J.: The baryon content of cosmic structures. Astrophys. J. 708(1), L14–L17 (2010) · doi:10.1088/2041-8205/708/1/L14
[61] Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983) · doi:10.1086/161130
[62] Milgrom, M.: Solutions for the modified Newtonian dynamics field equation. Astrophys. J. 302, 617–625 (1986) · doi:10.1086/164021
[63] Milgrom, M.: The modified dynamics as a vacuum effect. Phys. Lett. A 253(5–6), 273–279 (1999) · doi:10.1016/S0375-9601(99)00077-8
[64] Milgrom, M.: MOND–a pedagogical review. Acta Phys. Pol. A 32, 3613–3629 (2001)
[65] Milgrom, M.: MOND as modified inertia in mass profiles and shapes of cosmological structures. EAS Publications Series 9 (2005)
[66] Milgrom, M.: MOND effects in the inner solar system. Mon. Not. R. Astron. Soc. 399(1), 474–486 (2009) · doi:10.1111/j.1365-2966.2009.15302.x
[67] Miura, T., Arakida, H., Kasai, M., Kuramata, S.: Secular increase of the astronomical unit: a possible explanation in terms of the total Angular-Momentum conservation law. Publ. Astron. Soc. Jpn. 61, 1247–1250 (2009)
[68] Page, G.L.: Exploring the weak limit of gravity at solar system scales. Publ. Astron. Soc. Pac. 122(888), 259–260 (2010) · doi:10.1086/651059
[69] Page, G.L., Dixon, D.S., Wallin, J.F.: Can minor planets be used to assess gravity in the outer solar system? Astrophys. J. 642(1), 606–614 (2006) · doi:10.1086/500796
[70] Page, G.L., Wallin, J.F., Dixon, D.S.: How well do we know the orbits of the outer planets? Astrophys. J. 697(2), 1226–1241 (2009) · doi:10.1088/0004-637X/697/2/1226
[71] Pitjeva, E.V.: Ephemerides EPM2008: the updated model, constants, data. In: Soffel, M., Capitaine, N. (eds.) Proceedings of the Journees 2008 Systemes de Reference Spatio-Temporels. Lohrmann-Observatorium et Observatoire de Paris, pp. 57–60 (2009)
[72] Pitjeva, E.V., Pitjev, N.P.: Estimations of changes of the Sun’s mass and the gravitation constant from the modern observations of planets and spacecraft. Sol. Syst. Res. 46(1), 78–87 (2012) · doi:10.1134/S0038094612010054
[73] Price, R.H.: In an expanding universe, what doesn’t expand? arxiv:gr-qc/0508052
[74] Rievers, B., Bremer, S., List, M., Lämmerzahl, C., Dittus, H.: Thermal dissipation force modeling with preliminary results for pioneer 10/11. Acta Astronaut. 66(3–4), 467–476 (2010) · doi:10.1016/j.actaastro.2009.06.009
[75] Rievers, B., Lämmerzahl, C.: High precision thermal modeling of complex systems with application to the flyby and pioneer anomaly. Ann. Phys. (Leipz.) 523(6), 439–449 (2011) · Zbl 1220.83010 · doi:10.1002/andp.201100081
[76] Rievers, B., Lämmerzahl, C., Dittus, H.: Modeling of thermal perturbations using raytracing method with preliminary results for a test case model of the pioneer 10/11 radioisotopic thermal generators. Space Sci. Rev. 151(1–3), 123–133 (2010) · doi:10.1007/s11214-009-9594-6
[77] Rievers, B., Lämmerzahl, C., List, M., Bremer, S., Dittus, H.: New powerful thermal modelling for high-precision gravity missions with application to pioneer 10/11. New J. Phys. 11, 113032 (2009) · doi:10.1088/1367-2630/11/11/113032
[78] Sanders, R.H.: Solar system constraints on multifield theories of modified dynamics. Mon. Not. R. Astron. Soc. 370(3), 1519–1528 (2006) · doi:10.1111/j.1365-2966.2006.10583.x
[79] Sciama, D.W.: On the origin of the inertia. Mon. Not. R. Astron. Soc. 113, 34–42 (1953) · Zbl 0051.20005
[80] Standish, E.M.: The astronomical unit now, in transit of Venus: new views of the solar system and galaxy. In: IAU Coll., vol. 196, Kurtz, D.W. pp. 163–179. Cambridge University Press, Cambridge (2005)
[81] Standish, E.M.: Planetary and lunar ephemerides: testing alternate gravitational theories. In: Macias, A., Lämmerzahl, C., Camacho, A. (eds.) Recent Developments in Gravitation and Cosmology. AIP Conference Proceedings, vol. 977, pp. 254–263. American Institute of Physics, Melville (2008)
[82] Standish, E.M.: Testing alternate gravitational theories. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proceedings of the International Astronomical Union. IAU Symposium, vol. 261, pp. 179–182 (2010)
[83] Tangen, K.: Could the pioneer anomaly have a gravitational origin? Phys. Rev. D 76(4), 042005 (2007) · doi:10.1103/PhysRevD.76.042005
[84] Tegmark, M., Zaldarriaga, M., Hamilton, A.J.S.: Towards a refined cosmic concordance model: joint 11-parameter constraints from the cosmic microwave background and large-scale structure. Phys. Rev. D 63, 043007 (2001) · doi:10.1103/PhysRevD.63.043007
[85] Tully, R.B., Fisher, J.R.: A new method of determining distances to galaxies. Astron. Astrophys. 54(3), 661–673 (1977)
[86] Turyshev, S.G., Toth, V.T.: The pioneer anomaly. Living Rev. Relativ. 13, 4–175 (2010) · Zbl 1215.83011
[87] Turyshev, S.G., Toth, V.T., Kinsella, G., Lee, S.C., Lok, S.M., Ellis, J.: Support for the thermal origin of the pioneer anomaly. Phys. Rev. Lett. 108, 241101 (2012) · doi:10.1103/PhysRevLett.108.241101
[88] Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870–892 (1976) · doi:10.1103/PhysRevD.14.870
[89] Varieschi, G.U.: Conformal cosmology and the pioneer anomaly. Phys. Res. Int. 2012, 469095 (2012) · doi:10.1155/2012/469095
[90] Verlinde, E.: On the origin of gravity and the laws of newton. J. High Energy Phys. 4, 29 (2011) · Zbl 1260.81284
[91] Wallin, J.F., Dixon, D.S., Page, G.L.: Testing gravity in the outer solar system: results from trans-Neptunian objects. Astrophys. J. 666(2), 1296–1302 (2007) · doi:10.1086/520528
[92] Whitrow, G.J.: The mass of the universe. Nature 158, 165–166 (1946) · doi:10.1038/158165b0
[93] Whitrow, G.J., Randall, D.G.: Expanding world–models characterized by a dimensionless invariant. Mon. Not. R. Astron. Soc. 111, 455–467 (1951) · Zbl 0044.45505
[94] Williams, J.G., Boggs, D.H.: Lunar core and mantle. In: Schilliak, S. (ed.) What Does LLR See? Proc. 16th Int. Workshop Laser Ranging, pp. 101–120 (2009). http://cddis.gsfc.nasa.gov/lw16/docs/papers
[95] Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001) · doi:10.1029/2000JE001396
[96] Williams, J.G., Dickey, J.O.: Lunar geophysics, geodesy, and dynamics. In: Noomen, R., Klosko, S., Noll, C., Pearlman, M. (eds.) 13th International Workshop on Laser Ranging, NASA/CP-2003-212248, October 7–11 2002, pp. 75–86 (2003). See http://cddisa.gsfc.nasa.gov/lw13/lwproceedings.html
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.