×

zbMATH — the first resource for mathematics

Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. (English) Zbl 1263.81245
During the years 1981-83 Igor Batalin and Grigori Vilkovisky published four articles on gauge algebra and the quantization of gauge theories avoiding the use of gauge fixing. The new formalism was immediately seen as an extension of the widely known BRST approach to the renormalization of gauge theories with linearly dependent generators and thus was the starting point of further research and many articles in mathematical physics. The BV formalism, as it was called, now uses an extended notion of the renormalized time-ordered product of fields. In purely mathematical terms, the BV algebra is a graded supercommutative algebra with a unit and an operator \(\Delta\) satisfying \(\Delta^2=0\). In a previous paper, Fredenhagen and Rejzner applied the BV formalism to the functional approach to classical field theory. In the present paper the authors extend the concept of a renormalized time-ordered product and show the existence of a quantum sub-algebra closed with respect to time-ordering. Surprisingly, the standard path integral (often Euclidean) approach and regularizations are completely avoided here, though Batalin and Vilkovisky proposed a regularization scheme to deal with the divergencies. Hence, the most important results of the present paper concern the novel approach to renormalization. The standard time-ordered product is replaced by a renormalized product and so the algebraic structure is determined by two products, the star product of the BV algebra and the new version of the time-ordered product. Another important result concerns the use of the Master Ward Identity due to Brennecke and Dütsch allowing the so-called Quantum Master Equation and the quantum BV operators being written in a more detailed and explicit form. The proposed formalism can be applied the Yang-Mills model and General Relativity Theory, hopefully solving the problem of quantum gravity in the future.

MSC:
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T08 Constructive quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T75 Noncommutative geometry methods in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Albert C., Bleile B., Fröhlich J.: Batalin-Vilkovisky lntegrals in finite dimensions. J. Math. Phys. 51(1), 31 (2010) · Zbl 1274.81216
[2] Barnich, G.: Classical and quantum aspects of the extended antifield formalism. ULB-TH-00-28, May 2000; These d’agregation ULB (June 2000); Proceedings of the Spring School ”QFT and Hamiltonian Systems”, Calimanesti, Romania, May 2–7, 2000; avialble at http://arxiv.org/abs/hepth/0011120v1 , 2000
[3] Barnich G., Brandt F., Henneaux M.: Local BRST cohomology in the antifield formalism: I. General theorems. Commun. Math. Phys. 174, 57–92 (1995) · Zbl 0844.53059
[4] Barnich G., Henneaux M.: Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B 311, 123 (1993)
[5] Barnich G., Henneaux M., Hurth T., Skenderis K.: Cohomological analysis of gauge-fixed gauge theories. Phys. Lett. B 492, 376 (2000) · Zbl 0976.81119
[6] Barnich G., Brandt F., Henneaux M.: Local BRST cohomology in gauge theories. Phys. Rept. 338, 439 (2000) · Zbl 1097.81571
[7] Batalin I.A., Vilkovisky G.A.: Relativistic S matrix of dynamical systems with Boson and Fermion constraints. Phys. Lett. 69, 309 (1977)
[8] Batalin I.A., Vilkovisky G.A.: Gauge algebra and quantization. Phys. Lett. 102, 27 (1981)
[9] Batalin I.A., Vilkovisky G.A.: Feynman rules for reducible Gauge Theories. Phys. Lett. B 120, 166 (1983)
[10] Batalin I.A., Vilkovisky G.A.: Quantization of Gauge theories with linearly dependent generators. Phys. Rev. D 28, 2567 (1983)
[11] Becchi C., Rouet A., Stora R.: Renormalization of the Abelian Higgs-Kibble model. Commun. Math. Phys. 42, 127 (1975)
[12] Becchi C., Rouet A., Stora R.: Renormalization of Gauge theories. Ann. Phys. 98, 287 (1976)
[13] Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. New York: Interscience Publishers, Inc., 1959 · Zbl 0088.21701
[14] Bonora L., Cotta-Ramusino P.: Some remarks on BRS transformations, anomalies and the cohomoloy of the Lie algebra of the group of Gauge transformations. Commun. Math. Phys. 87, 589–603 (1983) · Zbl 0521.53064
[15] Brennecke F., Dütsch M.: Removal of violations of the Master Ward Identity in perturbative QFT. Rev. Math. Phys. 20, 119–172 (2008) · Zbl 1149.81017
[16] Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on Physical Backgrounds. Commun. Math. Phys. 208, 623–661 (2000) · Zbl 1040.81067
[17] Brunetti, R., Fredenhagen, K.: Towards a Background Independent Formulation of Perturbative Quantum Gravity. In: Proceedings of Workshop on Mathematical and Physical Aspects of Quantum Gravity, Blaubeuren, Germany, 28 Jul - 1 Aug 2005. Fauser, B. (ed.) et al.: Quantum gravity, Basel: Birkhäuser, 2006, pp. 151–157 · Zbl 1120.83016
[18] Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996) · Zbl 0923.58052
[19] Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle - A new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003) · Zbl 1047.81052
[20] Brunetti R., Dütsch M., Fredenhagen K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009) · Zbl 1201.81090
[21] Costello, K.: Renormalization and effective field theory. Mathematical Surveys and Monographs, Volume 170, Providence, RI: Amer. Math. Soc., 2011 · Zbl 1221.81004
[22] Costello, K.: Renormalisation and the Batalin-Vilkovisky formalism. http://arxiv.org/abs/0706.1533v3 [math.QA], 2007
[23] Costello, K.: Factorization algebras in perturbative quantum field theory. http://www.math.northwestern.edu/\(\sim\)costello/factorization_public.html · Zbl 1377.81004
[24] Dütsch M., Boas F.-M.: The master Ward identity. Rev. Math. Phys 14, 977–1049 (2002) · Zbl 1037.81074
[25] Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory, and deformation quantization. In: Proceedings of the Conference on Mathematical Physics in Mathematics and Physics, Siena June 20–25 2000, available at http://arxiv.org/abs/hep-th/0101079v1 , 2001 · Zbl 0990.81054
[26] Dütsch M., Fredenhagen K.: Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity. Rev. Math. Phys. 16(10), 1291–1348 (2004) · Zbl 1084.81054
[27] Dütsch M., Fredenhagen K.: The master Ward identity and generalized Schwinger-Dyson equation in classical field theory. Commun. Math. Phys. 243, 275 (2003) · Zbl 1049.70017
[28] Epstein H., Glaser V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré A 19, 211 (1973) · Zbl 1216.81075
[29] Fredenhagen, K.: Locally Covariant Quantum Field Theory. In: Proceedings of the XIVth International Congress on Mathematical Physics, Lisbon 2003, available at http://arxiv.org/abs/hep-th/0403007v1 , 2009 · Zbl 1221.81123
[30] Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. http://arxiv/org.abs/1101.5112v4 [math-ph], 2011 · Zbl 1418.70034
[31] Fredenhagen, K., Rejzner, K.: Local covariance and background independence. to be published in the Proceedings of the conference ”Quantum field theory and gravity”, Regensburg (28 Sep - 1 Oct 2010), http://arxiv.org/abs/1102.2376v1 [math-ph], 2011 · Zbl 1246.83075
[32] Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964) · Zbl 0139.46003
[33] Haag, R.: Discussion des ”axiomes” et des propriétés asymptotiques d’une théorie des champs locales avec particules composées. In: Les Problèmes Mathématiques de la Théorie Quantique des Champs, Colloque Internationaux du CNRS LXXV (Lille 1957), Paris: CNRS 1959, pp. 151–157
[34] Haag, R.: Local Quantum Physics. 2nd ed., Berlin-Heidleberg-NewYork: Springer, 1996 · Zbl 0857.46057
[35] Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7(1), 65–222 (1982) · Zbl 0499.58003
[36] Henneaux, M., Teitelboim, C.: Quantization of gauge systems. Princeton, NJ: Princeton Univ. Pr., 1992 · Zbl 0838.53053
[37] Henneaux, M.: Lectures On The Antifield - BRST Formalism For Gauge Theories. Lectures given at 20 th GIFT Int. Seminar on Theoretical Physics, Jaca, Spain, Jun 5–9, 1989, and at CECS, Santiago, Chile, June/July 1989, Nucl. Phys. B (Proc. Suppl.) A18, 47 (1990)
[38] Hollands S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008) · Zbl 1161.81022
[39] Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001) · Zbl 0989.81081
[40] Hollands S., Wald R.M.: Existence of local covariant time-ordered-products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309–345 (2002) · Zbl 1015.81043
[41] Hollands S., Wald R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123–160 (2003) · Zbl 1059.81138
[42] Hollands S., Wald R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005) · Zbl 1078.81062
[43] Hörmander, L.: The analysis of linear partial differential operators I: Distribution theory and Fourier analysis. Berlin-Heidleberg-New York: Springer, 2003 · Zbl 1028.35001
[44] De Jonghe F., París J., Troost W.: The BPHZ renormalised BV master equation and two-loop anomalies in chiral gravities. Nucl. Phys. B 476, 559 (1996) · Zbl 0925.81396
[45] Kriegl, A., Michor, P.: Convenient setting of global analysis, Mathematical Surveys and Monographs 53, Providence, RI: Amer. Math. Soc., 1997 · Zbl 0889.58001
[46] Lee B.W., Zinn-Justin J.: Spontaneously Broken Gauge symmetries I,II,III. Phys. Rev D 5, 3121–3160 (1972)
[47] Neeb, K.-H.: Monastir Lecture Notes on Infinite-Dimensional Lie Groups, http://www.math.uni-hamburg.de/home/wockel/data/monastir.pdf
[48] Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973) · Zbl 0274.46047
[49] París J.: Non-locally regularized antibracket-antifield formalism and anomalies in chiral W 3 gravity. Nucl. Phys. B 450, 357 (1995) · Zbl 1003.81555
[50] Piguet, O., Sorella, S.P.: Algebraic renormalization: Perturbative renormalization, symmetries and anomalies, Vol. M28 of Lect. Notes Phys., Berlin-Heidleberg-New York: Springer, 1995 · Zbl 0845.58069
[51] Polchinski J.: Renormalization and Effective Lagrangians. Nucl. Phys. B 231, 269–295 (1984)
[52] Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996) · Zbl 0858.53055
[53] Rejzner K.: Fermionic fields in the functional approach to classical field theory. Rev. math. Phys. 23(9), 1009–1033 (2011) · Zbl 1242.81112
[54] Salmhofer, M.: Renormalization. An introduction. Texts and Monographs in Physics. Berlin: Springer-Verlag, 1999 · Zbl 0913.00014
[55] Schreiber, U.: On Lie modules and the BV complex. http://www.math.uni-hamburg.de/home/schreiber/chain.pdf , 2008
[56] Stasheff, J.: The (secret?) homological algebra of the Batalin-Vilkovisky approach. In: Proceedings of the Conference Secondary Calculus and Cohomological Physics, Moscow, August 24–31, 1997, http://arxiv.org/abs/hep-th/9712157v1 , 1997 · Zbl 0969.17012
[57] Stückelberg E.C.G., Rivier D.: A propos des divergences en théorie des champs quantifiés. Helv. Phys. Acta 23, 236–239 (1950) · Zbl 0038.40703
[58] Stückelberg E.C.G., Petermann A.: La normalisation des constantes dans la théorie des quanta. Helv. Phys. Acta 26, 499–520 (1953) · Zbl 0053.47506
[59] Tonin M.: Dimensional regularization and anomalies in chiral gauge theories. Nucl. Phys. (Proc. Suppl.) B 29, 137 (1992) · Zbl 0954.81526
[60] Troost W., van Nieuwenhuizen P., Van Proeyen A.: Anomalies and the Batalin-Vilkovisky Lagrangian formalism. Nucl. Phys. B 333, 727 (1990)
[61] Tyutin, I.V.: Gauge invariance in field theory and statistical physics in operator formalism (In Russian), Lebedev preprint (1975) 75-39, available at http://arxiv.org/abs/0812.0580 [hep-th], 2008
[62] Wess J., Zumino B.: Consequences of anomalous Ward identities. Phys. Lett. B 37, 95 (1971)
[63] Wightman A.S., Gårding L.: Fields as operator valued distributions in relativistic quantum theory. Ark. Fys. 28, 129–189 (1964) · Zbl 0138.45401
[64] Zinn-Justin, J.: Renormalization of Gauge Theories. In: Trends in Elementary Particle Theory. edited by H. Rollnik, K. Dietz, Lecture Notes in Physics 37, Berlin: Springer-Verlag, 1975
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.