×

Classical information entropy and Wigner function evolution of random phase negative binomial optical fields in thermal channel. (English) Zbl 1263.81237

Summary: The Wehrl classical information entropy of random phase negative binomial states (RPNBS) is investigated, and their Wigner function evolution in the thermal environment is also discussed. It is shown that the evolution of the RPNBS in the thermal channel can be roughly regarded as the shift of the parameters \(\varepsilon\) and \(\alpha_0\) of the RPNBS.

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81V80 Quantum optics
94A17 Measures of information, entropy
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/978-3-662-04209-0 · doi:10.1007/978-3-662-04209-0
[2] DOI: 10.1016/j.physrep.2006.01.004 · doi:10.1016/j.physrep.2006.01.004
[3] DOI: 10.1080/713821735 · doi:10.1080/713821735
[4] DOI: 10.1103/PhysRevA.76.011804 · doi:10.1103/PhysRevA.76.011804
[5] DOI: 10.1007/s11080-006-9016-0 · Zbl 1110.81052 · doi:10.1007/s11080-006-9016-0
[6] DOI: 10.1016/j.physleta.2010.03.036 · Zbl 1237.81054 · doi:10.1016/j.physleta.2010.03.036
[7] DOI: 10.1016/0030-4018(89)90201-0 · doi:10.1016/0030-4018(89)90201-0
[8] DOI: 10.1080/09500349114552111 · Zbl 0941.81627 · doi:10.1080/09500349114552111
[9] DOI: 10.1103/PhysRevA.45.1787 · doi:10.1103/PhysRevA.45.1787
[10] DOI: 10.1080/09500349808231756 · doi:10.1080/09500349808231756
[11] DOI: 10.1007/s100530050564 · doi:10.1007/s100530050564
[12] DOI: 10.1016/S0375-9601(96)00753-0 · Zbl 1037.81645 · doi:10.1016/S0375-9601(96)00753-0
[13] DOI: 10.1088/1464-4266/3/5/303 · doi:10.1088/1464-4266/3/5/303
[14] DOI: 10.1103/PhysRevA.41.519 · doi:10.1103/PhysRevA.41.519
[15] DOI: 10.1103/PhysRevA.45.6925 · doi:10.1103/PhysRevA.45.6925
[16] Louisell W. H., Quantum Statistical Properties of Radiation (1973) · Zbl 1049.81683
[17] Husimi K., Proc. Phys. Math. Soc. Jpn. 22 pp 264–
[18] DOI: 10.1007/BF01940328 · Zbl 0385.60089 · doi:10.1007/BF01940328
[19] DOI: 10.1088/0953-4075/42/5/055505 · doi:10.1088/0953-4075/42/5/055505
[20] DOI: 10.1103/PhysRevLett.91.010401 · doi:10.1103/PhysRevLett.91.010401
[21] DOI: 10.1103/PhysRevA.69.015802 · doi:10.1103/PhysRevA.69.015802
[22] DOI: 10.1103/PhysRevA.48.2479 · doi:10.1103/PhysRevA.48.2479
[23] DOI: 10.1016/0370-1573(84)90160-1 · doi:10.1016/0370-1573(84)90160-1
[24] DOI: 10.1007/978-3-662-04103-1 · doi:10.1007/978-3-662-04103-1
[25] DOI: 10.1007/978-3-662-03875-8 · doi:10.1007/978-3-662-03875-8
[26] DOI: 10.1103/PhysRevA.75.045801 · doi:10.1103/PhysRevA.75.045801
[27] DOI: 10.1364/JOSAB.25.000054 · doi:10.1364/JOSAB.25.000054
[28] DOI: 10.1016/j.physleta.2008.10.016 · Zbl 1227.81009 · doi:10.1016/j.physleta.2008.10.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.