×

zbMATH — the first resource for mathematics

A time-accurate explicit multi-scale technique for gas dynamics. (English) Zbl 1262.76079
Summary: We present a new time-accurate algorithm for the explicit numerical integration of the compressible Euler equations of gas dynamics. This technique is based on the discrete-event simulation (DES) methodology for nonlinear flux-conservative PDEs [the authors, J. Comput. Phys. 216, No. 1, 179–194 (2006; Zbl 1093.65083)]. DES enables adaptive distribution of CPU resources in accordance with local time scales of the underlying numerical solution. It distinctly stands apart from multiple (local) time-stepping algorithms in that it requires neither selecting a global synchronization time step nor pre-determining a sequence of time-integration operations for individual parts of a heterogeneous numerical system.
In this paper we extend the DES methodology in three important directions: (i) we apply DES to a system of coupled gas dynamics equations discretized via a central-upwind scheme [A. Kurganov and E. Tadmor, J. Comput. Phys. 160, No. 1, 241–282 (2000; Zbl 0987.65085); A. Kurganov, S. Noelle and G. Petrova, SIAM J. Sci. Comput. 23, No. 3, 707–740 (2001; Zbl 0998.65091)]; (ii) we introduce a new Preemptive Event Processing (PEP) technique, which automatically enforces synchronous execution of events with sufficiently close update times; (iii) we significantly improve the accuracy of the previous algorithm [the authors, op. cit.] by applying locally second-order-in-time flux-conserving corrections to the solution obtained with the forward Euler scheme. The performance of the new technique is demonstrated in a series of one-dimensional gas dynamics test problems by comparing numerical solutions obtained in event-driven and equivalent time-stepping simulations.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N15 Gas dynamics (general theory)
35Q31 Euler equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ()
[2] Bell, J.; Berger, M.; Saltzman, J.; Welcome, M., Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. sci. comput., 15, 1, 127-138, (1994) · Zbl 0793.65072
[3] Berger, M.J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. comput. phys., 53, 484, (1984) · Zbl 0536.65071
[4] Berger, M.J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. comput. phys., 82, 64, (1989) · Zbl 0665.76070
[5] Biesiadecki, J.J.; Skeel, R.D., Dangers of multiple time step methods, J. comput. phys., 109, 318-328, (1993) · Zbl 0810.65075
[6] Crossley, A.J.; Wright, N.G., Time accurate local timestepping for the unsteady shallow water equations, Int. J. numer. methods fluids, 48, 775-799, (2005) · Zbl 1071.76033
[7] Dawson, C.; Kirby, R., High resolution schemes for conservation laws with locally varying time steps, SIAM J. sci. comput., 22, 6, 2256, (2001) · Zbl 0980.35015
[8] M. Käser, M. Dumbser, An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: local time stepping and p-adaptivity, Geophys. J. Int., submitted for publication.
[9] Einfeldt, B., On Godunov-type methods for gas-dynamics, SIAM J. numer. anal., 25, 357-393, (1988)
[10] Flaherty, J.E.; Loy, R.M.; Shephard, M.S.; Szymanski, B.K.; Teresco, J.D.; Ziantz, L.H., Adaptive local refinement with octree load balancing for the parallel solution of three-dimensional conservation laws, J. parallel distrib. comput., 47, 139-152, (1997)
[11] Fujimoto, R.M., Parallel and distributed simulation systems, (2000), Wiley Interscience
[12] Gerritsen, M.G.; Durlofsky, L.J., Modeling fluid flow in oil reservoirs, Annu. rev. fluid mech., 37, 211-238, (2005) · Zbl 1082.76107
[13] Karimabadi, H.; Driscoll, J.; Omelchenko, Y.A.; Omidi, N., A new asynchronous methodology for modeling of physical systems: breaking the curse of Courant condition, J. comput. phys., 205, 2, 755-775, (2005) · Zbl 1087.76538
[14] Karimabadi, H.; Driscoll, J.; Dave, J.; Omelchenko, Y.; Perumalla, K.; Fujimoto, R.; Omidi, N., Parallel discrete event simulations of grid-based models: asynchronous electromagnetic hybrid code, Lect. notes comput. sci., 3732, 573-582, (2006)
[15] Kleb, W.L.; Batina, J.T.; Williams, M.H., Temporal adaptive Euler/navier – stokes algorithm involving unstructured dynamic meshes, Aiaa j., 32, 9, 1926-1928, (1994) · Zbl 0755.76064
[16] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection – diffusion equations, J. comput. phys., 160, 241-282, (2000) · Zbl 0987.65085
[17] Kurganov, A.; Noelle, S.; Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton – jacobi equations, SIAM J. sci. comput., 23, 3, 707-740, (2001) · Zbl 0998.65091
[18] Lew, A.; Mardsen, J.E.; Ortiz, M.; West, M., Asynchronous variational integrators, Arch. rational mech. anal., 167, 85, (2003) · Zbl 1055.74041
[19] Linn, R.R.; Cunningham, P., Numerical simulations of grass fires using a coupled atmosphere-fire model: basic fire behavior and dependence on wind speed, J. geophys. res., 110, D13107, (2005)
[20] Makino, J.; Hut, P.; Kaplan, M.; Saygun, H., A time-symmetric block time-step algorithm for N-body simulations, New astron., 12, 124-133, (2006)
[21] Nutaro, J.; Zeigler, B.P.; Jammalamadaka, R.; Akerkar, S., Discrete event solution of gas dynamics within the DEVS framework, Lect. notes comput. sci., 2660, 319-328, (2003)
[22] Omelchenko, Y.A.; Karimabadi, H., Event-driven hybrid particle-in-cell simulation: a new paradigm for multi-scale plasma modeling, J. comput. phys., 216, 1, 153-178, (2006) · Zbl 1126.82043
[23] Omelchenko, Y.A.; Karimabadi, H., Self-adaptive time integration of flux-conservative equations with sources, J. comput. phys., 216, 1, 179-194, (2006) · Zbl 1093.65083
[24] Oran, E.S.; Boris, J.P., Numerical simulation of reactive flows, (2001), Cambridge University Press, Naval Research Laboratory · Zbl 0762.76098
[25] Owen, J.M.; Villumsen, J.V.; Shapiro, P.R.; Martel, H., Adaptive smoothed particle hydrodynamics: methodology. II, Astrophys. J. suppl., 116, 115-209, (1998)
[26] Peng, D.; Merriman, B.; Osher, S.; Zhao, H.; Kang, M., A PDE-based fast local level set method, J. comput. phys., 155, 410-438, (1999) · Zbl 0964.76069
[27] Raeder, J., Global geospace modeling: tutorial and review, ()
[28] Reisner, J.M.; Wynne, S.; Margolin, L.; Linn, R.R., Coupled atmospheric-fire modeling employing the method of averages, Month. weather rev., 128, 3683-3691, (2000)
[29] Reisner, J.M.; Mousseau, V.A.; Wyszogrodzki, A.A.; Knoll, D.A., An implicitly balanced hurricane model with physics-based preconditioning, Month. weather rev., 133, 1003-1022, (2005)
[30] Sankaran, V.; Menon, S., LES of spray combustion in swirling flows, J. turbul., 3, 1-23, (2002) · Zbl 1082.76565
[31] Sod, G., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. comput. phys., 27, 1-30, (1978) · Zbl 0387.76063
[32] Tao, Y.-G.; den Otter, W.K.; Dhont, J.K.G.; Briels, W.J., Isotropic-nematic spinodals of rigid long thin rodlike colloids by event-driven Brownian dynamics simulations, J. chem. phys., 124, 134906, (2006)
[33] Tang, Y.R.; Perumalla, K.S.; Fujimoto, R.M.; Karimabadi, H.; Driscoll, J.; Omelchenko, Y., Optimistic simulations of physical systems using reverse computation, Trans. soc. model. simul. int., 82, 1, 61-73, (2006)
[34] Usmanov, A.V.; Goldstein, M.L., A tilted-dipole MHD model of the solar corona and solar wind, J. geophys. res., 108, A9, 1354, (2003)
[35] van der Ven, H.; Niemann-Tuitman, B.E.; Veldman, A.E.P., An explicit multi-time-stepping algorithm for aerodynamic flows, J. comp. appl. math., 82, 423-431, (1997) · Zbl 0893.76064
[36] Wang, Y.; Trouvé, A., Artificial acoustic stiffness reduction in fully compressible, direct numerical simulation of combustion, Combust. theory model., 8, 633-660, (2004)
[37] Woodward, P.; Colella, P., The numerical solution of two-dimensional fluid flow with strong shocks, J. comput. phys., 54, 115-173, (1988) · Zbl 0573.76057
[38] Zhang, X.D.; Trépanier, J.-Y.; Reggio, M.; Camarero, R., Time-accurate local time stepping method based on flux updating, Aiaa j., 30, 8, 1980-1985, (1994)
[39] Zeigler, B.P.; Praehofer, H.; Kim, T.G., Theory of modeling and simulation, (2000), Academic Press
[40] Ziegler, U., A central-constrained transport scheme for ideal magnetohydrodynamics, J. comput. phys., 196, 293-416, (2004) · Zbl 1115.76427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.