×

zbMATH — the first resource for mathematics

Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics. (English) Zbl 1261.76031
Summary: The proposed scheme, which is a conservative form of the interpolated differential operator scheme (IDO-CF), can provide high accurate solutions for both compressible and incompressible fluid equations. Spatial discretizations with fourth-order accuracy are derived from interpolation functions locally constructed by both cell-integrated values and point values. These values are coupled and time-integrated by solving fluid equations in the flux forms for the cell-integrated values and in the derivative forms for the point values. The IDO-CF scheme exactly conserves mass, momentum, and energy, retaining the high resolution more than the non-conservative form of the IDO scheme. A direct numerical simulation of turbulence is carried out with comparable accuracy to that of spectral methods. Benchmark tests of Riemann problems and lid-driven cavity flows show that the IDO-CF scheme is immensely promising in compressible and incompressible fluid dynamics studies.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yabe, T.; Aoki, T., A universal solver for hyperbolic equations by cubic-polynomial interpolation I. one-dimensional solver, Comput. phys. commun., 66, 219-242, (1991) · Zbl 0991.65521
[2] Yabe, T.; Xiao, F.; Utsumi, T., The constrained interpolation profile method for multiphase analysis, J. comp. phys., 169, 556-593, (2001) · Zbl 1047.76104
[3] Utsumi, T.; Aoki, T.; Kunugi, T., Stability and accuracy of the cubic interpolated propagation scheme, Comput. phys. commun., 101, 9-20, (1997)
[4] Yabe, T.; Takizawa, K.; Xiao, F.; Aoki, T.; Himeno, T.; Takahashi, T.; Kunimatsu, A., A new paradigm of computer graphics by universal solver for solid, liquid, and gas, JSME int. J. B, 47, 656-663, (2004)
[5] Utsumi, T.; Yabe, T.; Koga, J.; Aoki, T.; Sekine, M., Accurate basis set by the CIP method for the solutions of Schrödinger equation, Comput. phys. commun., 157, 121-138, (2004) · Zbl 1196.35012
[6] Takizawa, K.; Yabe, T.; Chino, M.; Kawai, T.; Wataji, K.; Hashimoto, H.; Watanabe, T., Simulation and experiment on swimming fish and skimmer by CIP method, Comput. struct., 83, 397-408, (2005)
[7] Himeno, T.; Watanabe, T.; Konno, A., Numerical analysis for propellant management in rocket tanks, J. propul. power, 21, 76-86, (2005)
[8] Moriguchi, S.; Yashima, A.; Sawada, K.; Uzuoka, R.; Ito, M., Numerical simulation on flow failure of geomaterials based on fluid dynamics, Soils fund., 45, 155-166, (2005)
[9] Aoki, T., Interpolated differential operator (IDO) scheme for solving partial differential equations, Comput. phys. commun., 102, 132-146, (1997)
[10] Sakurai, K.; Aoki, T.; Lee, W.H.; Kato, K., Poisson equation solver with fourth-order accuracy by using interpolated differential operator scheme, Comput. math. appl., 43, 621-630, (2002) · Zbl 0999.65114
[11] Lele, S.K., Compact finite difference schemes with spectral-like resolution, J. comput. phys., 103, 16-42, (1992) · Zbl 0759.65006
[12] Imai, Y.; Aoki, T., Accuracy study of the IDO scheme by Fourier analysis, J. comput. phys., 217, 453-472, (2006) · Zbl 1102.65094
[13] Imai, Y.; Aoki, T., Stable coupling between vector and scalar variables for the IDO scheme on collocated grids, J. comput. phys., 215, 81-97, (2006) · Zbl 1140.76420
[14] Kato, K.; Aoki, T.; Kubota, S.; Yoshida, M., A numerical scheme for strong blast wave driven by explosion, Int. J. numer. meth. fluids, 51, 1335-1353, (2006) · Zbl 1158.76379
[15] Gaitonde, D.; Shang, J.S., Optimized compact-difference-based finite-volume schemes for linear wave phenomena, J. comput. phys., 138, 617-643, (1997) · Zbl 0898.65055
[16] Kobayashi, M.H., On a class of Padé finite volume methods, J. comput. phys., 156, 137-180, (1999) · Zbl 0940.65092
[17] Pereira, J.M.C.; Kobayashi, M.H.; Pereira, J.C.F., A fourth-order-accurate finite volume compact method for the incompressible navier – stokes solutions, J. comput. phys., 167, 217-243, (2001) · Zbl 1013.76054
[18] Tanaka, R.; Nakamura, T.; Yabe, T., Constructing exactly conservative scheme in a non-conservative form, Comput. phys. commun., 126, 232-243, (2000) · Zbl 0959.65097
[19] Yabe, T.; Tanaka, R.; Nakamura, T.; Xiao, F., An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension, Mon. wea. rev., 129, 332-344, (2001)
[20] Nakamura, T.; Tanaka, R.; Yabe, T.; Takizawa, K., Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique, J. comput. phys., 147, 171-207, (2001) · Zbl 0995.65094
[21] Xiao, F., A simple CIP finite volume method for incompressible flow, JSME int. J. B, 47, 664-671, (2004)
[22] Xiao, F.; Ikebata, A., An efficient method for capturing free boundaries in multi-fluid simulations, Int. J. numer. meth. fluid, 42, 187-210, (2003) · Zbl 1143.76547
[23] Harlow, F.H.; Welch, J.E., A numerical calculation of time dependent viscous incompressible flow of fluid with free surface, Phys. fluid, 8, 2182-2189, (1965) · Zbl 1180.76043
[24] Amsden, A.A.; Harlow, F.H., A simplified MAC technique for incompressible fluid flow calculations, J. comput. phys., 6, 322-325, (1970) · Zbl 0206.55002
[25] van de Vorst, H., Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of non-symmetric linear system, SIAM J. sci. stat. comput., 13, 631-644, (1992) · Zbl 0761.65023
[26] Chu, P.C.; Fan, C., A three-point combined compact difference scheme, J. comput. phys., 140, 370-399, (1998) · Zbl 0923.65071
[27] Sod, G.A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. comput. phys., 27, 1-31, (1978) · Zbl 0387.76063
[28] Xiao, F.; Yabe, T.; Peng, X.; Kobayashi, H., Conservative and oscillation-less atmospheric transport schemes based on rational functions, J. geophys. res., 107, 4609-4619, (2002)
[29] Schulz-Rinne, C.W.; Collins, J.P.; Glaz, H.M., Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. sci. comput., 14, 1394-1414, (1993) · Zbl 0785.76050
[30] Lax, P.D.; Liu, X.-D., Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. sci. comput., 19, 319-340, (1998) · Zbl 0952.76060
[31] Kurganov, A.; Tadmor, E., Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numer. meth. pdes, 18, 584-608, (2002) · Zbl 1058.76046
[32] Schroll, H.J., Relaxed high resolution schemes for hyperbolic conservation lows, SIAM J. sci. comput., 21, 251-279, (2004) · Zbl 1067.76066
[33] Gottlieb, D.; Orszag, A., Numerical analysis of spectral methods, (1977), SIAM Philadelphia · Zbl 0412.65058
[34] Ghia, U.; Ghia, K.N.; Shin, C.T., High-re solution for incompressible flow using the navier – stokes equations and a multigrid method, J. comput. phys., 48, 387-411, (1982) · Zbl 0511.76031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.