×

zbMATH — the first resource for mathematics

Process algebra modelling styles for biomolecular processes. (English) Zbl 1260.92030
Priami, Corrado (ed.) et al., Transactions on Computational Systems Biology XI. Berlin: Springer (ISBN 978-3-642-04185-3/pbk). Lecture Notes in Computer Science 5750. Lecture Notes in Bioinformatics. Journal Subline, 1-25 (2009).
Summary: We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed.
For the entire collection see [Zbl 1175.92022].

MSC:
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
Software:
Bio-PEPA; PEPA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alur, R., Henzinger, T.A.: Reactive modules. Formal methods in System Design 15(1), 7–48 (1990) · doi:10.1023/A:1008739929481
[2] Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Calculus of Looping Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72(1-3), 21–35 (2006) · Zbl 1101.92021
[3] Brim, L., Jacquet, J.-M., Gilbert, D.: A process algebra for synchronous concurrent programming. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 165–178. Springer, Heidelberg (1996) · Zbl 1355.68191 · doi:10.1007/3-540-61735-3_11
[4] Bortolussi, L.: Stochastic concurrent constraint programming. In: Proceedings of QAPL 2006: 4th International workshop on quantitative aspects of programming languages, vol. 164, pp. 65–80 (2006) · doi:10.1016/j.entcs.2006.07.012
[5] Bortolussi, L., Policriti, A.: Modelling biological systems in stochastic constraint programming. Constraints 13, 66–90 (2008) · Zbl 1144.92001 · doi:10.1007/s10601-007-9034-8
[6] Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006) · Zbl 05282615 · doi:10.1007/11905455_1
[7] Cardelli, L.: Brane Calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005) · Zbl 1088.68657 · doi:10.1007/978-3-540-25974-9_24
[8] Cardelli, L.: On process rate semantics. Theoretical Computer Science 391(1), 190–215 (2008) · Zbl 1133.68054 · doi:10.1016/j.tcs.2007.11.012
[9] Cardelli, L., Panina, E.M., Regev, A., Shapiro, E., Silverman, W.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004) · Zbl 1069.68569 · doi:10.1016/j.tcs.2004.03.061
[10] Ciocchetta, F., Guerriero, M.L.: Modelling Biological Compartments in Bio-PEPA. ENTCS 227, 77–95 (2009) · Zbl 1348.92069
[11] Ciochetta, F., Hillston, J.: Bio-PEPA: a framework for modelling and analysis of biological systems. Theoretical Computer Science (to appear) · Zbl 1173.68041 · doi:10.1016/j.tcs.2009.02.037
[12] Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325(1), 25–44 (2004) · Zbl 1071.68098 · doi:10.1016/j.tcs.2004.03.063
[13] Calder, M., Vyshemirsky, V., Orton, R., Gilbert, D.: Analysis of signalling pathways using Continuous Time Markov Chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006) · Zbl 05282607 · doi:10.1007/11880646_3
[14] Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007) · Zbl 1151.68723 · doi:10.1007/978-3-540-74407-8_3
[15] Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative experiments. Electronic Notes in Computer Science 164, 101–117 (2006) · doi:10.1016/j.entcs.2006.07.014
[16] Gillespie, D., Petzold, L.: Numerical Simulation for Biochemical Kinetics. In: System Modelling in Cellular Biology. MIT Press, Cambridge (2006)
[17] Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: The Proceedings of 4th International Workshop on Computational Methods in Systems Biology 2006, Trento, Italy, October 18-19 (2006) · Zbl 05282315 · doi:10.1007/11885191_3
[18] Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996) · Zbl 1080.68003 · doi:10.1017/CBO9780511569951
[19] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985) · Zbl 0637.68007
[20] Milner, R.: A Calculus for Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980) · Zbl 0452.68027 · doi:10.1007/3-540-10235-3
[21] Milner, R.: Communicating and Mobile Systems: the \(\pi\)-Calculus. Cambridge University Press, Cambridge (1999) · Zbl 0942.68002
[22] Priami, C.: Stochastic \(\pi\)-calculus. The Computer Journal 38, 578–589 (1995) · Zbl 05478217 · doi:10.1093/comjnl/38.7.578
[23] Regev, A., Shapiro, E.: Cellular abstractions: cells as computation. Nature 419, 343 (2001) · doi:10.1038/419343a
[24] Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using \(\pi\)-calculus process algebra. In: Pacific Symposium on Biocomputing 2001 (PSB 2001), pp. 459–470 (2001)
[25] Tymchyshyn, O., Kwiatkowska, M.: Combining intra- and inter-cellular dynamics to investigate intestinal homeostasis. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 63–76. Springer, Heidelberg (2008) · Zbl 1375.92015 · doi:10.1007/978-3-540-68413-8_5
[26] Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse Plug-in. Performance Evaluation Review 36(4), 28–33 (2009) · doi:10.1145/1530873.1530880
[27] Versari, C.: A Core Calculus for a Comparative Analysis of Bio-inspired Calculi. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 411–425. Springer, Heidelberg (2007) · Zbl 1187.68331 · doi:10.1007/978-3-540-71316-6_28
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.