zbMATH — the first resource for mathematics

On a risk model with surplus-dependent premium and tax rates. (English) Zbl 1260.91120
Summary: In this paper, the compound Poisson risk model with surplus-dependent premium rate is analyzed in the taxation system proposed by H. Albrecher and C. Hipp [Bl. DGVFM 28, No. 1, 13–28 (2007; Zbl 1119.62103)]. In the compound Poisson risk model, Albrecher and Hipp showed that a simple relationship between the ruin probabilities in the risk model with and without tax exists. This so-called “tax identity” was later generalized to a surplus-dependent tax rate by C. Albrecher et al. [Insur. Math. Econ. 44, No. 2, 304–306 (2009; Zbl 1163.91430)]. The present paper further generalizes these results to the Gerber-Shiu function with a generalized penalty function involving the maximum surplus prior to ruin. We show that this generalized Gerber-Shiu function in the risk model with tax is closely related to the ‘original’ Gerber-Shiu function in the risk model without tax defined in a dividend barrier framework. The moments of the discounted tax payments before ruin and the optimal threshold level for the tax authority to start collecting tax payments are also examined.

91B30 Risk theory, insurance (MSC2010)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60J75 Jump processes (MSC2010)
90B05 Inventory, storage, reservoirs
Full Text: DOI
[1] Albrecher H, Hipp C (2007) Lundberg’s risk process with tax. Blätter der DGVFM 28(1):13–28 · Zbl 1119.62103 · doi:10.1007/s11857-007-0004-4
[2] Albrecher H, Badescu AL, Landriault D (2008a) On the dual risk model with tax payments. Insur Math Econ 42(3):1086–1094 · Zbl 1141.91481 · doi:10.1016/j.insmatheco.2008.02.001
[3] Albrecher H, Renaud J-F, Zhou X (2008b) A Lévy insurance risk process with tax. J Appl Probab 45(2):363–375 · Zbl 1144.60032 · doi:10.1239/jap/1214950353
[4] Albrecher H, Borst S, Boxma O, Resing J (2009) The tax identity in risk theory–a simple proof and an extension. Insur Math Econ 44(2):304–306 · Zbl 1163.91430 · doi:10.1016/j.insmatheco.2008.05.001
[5] Biffis E, Kyprianou AE (2010) A note on scale functions and the time value of ruin for Lévy insurance risk processes. Insur Math Econ 46(1):85–91 · Zbl 1231.91145 · doi:10.1016/j.insmatheco.2009.04.005
[6] Cai J (2007) On the time value of absolute ruin with debit interest. Adv Appl Probab 39(2):343–359 · Zbl 1141.91023 · doi:10.1239/aap/1183667614
[7] Cai J, Dickson DCM (2002) On the expected discounted penalty function at ruin of a surplus process with interest. Insur Math Econ 30(3):389–404 · Zbl 1074.91027 · doi:10.1016/S0167-6687(02)00120-8
[8] Cai J, Feng R, Willmot GE (2009) The compound Poisson surplus model with interest and liquid reserves: analysis of the Gerber–Shiu discounted penalty function. Methodol Comput Appl Probab 11(3):401–423 · Zbl 1170.91407 · doi:10.1007/s11009-007-9050-6
[9] Cheung ECK, Drekic S (2008) Dividend moments in the dual risk model: exact and approximate approaches. ASTIN Bull 38(2):399–422 · Zbl 1256.91026 · doi:10.2143/AST.38.2.2033347
[10] Cheung ECK, Landriault D (2010) A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model. Insur Math Econ 46(1):127–134 · Zbl 1231.91156 · doi:10.1016/j.insmatheco.2009.07.009
[11] Dickson DCM, Waters HR (2004) Some optimal dividends problems. ASTIN Bull 34(1):49–74 · Zbl 1097.91040 · doi:10.2143/AST.34.1.504954
[12] Gerber HU, Lin SX, Yang H (2006a) A note on the dividends-penalty identity and the optimal dividend barrier. ASTIN Bull 36(2):489–503 · Zbl 1162.91374 · doi:10.2143/AST.36.2.2017931
[13] Gerber HU, Shiu ESW, Smith N (2006b) Maximizing dividends without bankruptcy. ASTIN Bull 36(1):5–23 · Zbl 1162.91375 · doi:10.2143/AST.36.1.2014143
[14] Gerber HU, Shiu ESW (1998) On the time value of ruin. N Am Actuar J 2(1):48–72 · Zbl 1081.60550 · doi:10.1080/10920277.1998.10595671
[15] Kyprianou AE, Zhou X (2009) General tax structures and the Lévy insurance risk model. J Appl Probab 46(4):1146–1156 · Zbl 1210.60098 · doi:10.1239/jap/1261670694
[16] Lakshmikantham V, Rao RMM (1995) Theory of integro-differential equations. Gordon and Breach Science Publishers, Lausanne · Zbl 0849.45004
[17] Lin SX, Pavlova KP (2006) The compound Poisson risk model with a threshold dividend strategy. Insur Math Econ 38(1):57–80 · Zbl 1157.91383 · doi:10.1016/j.insmatheco.2005.08.001
[18] Lin SX, Sendova KP (2008) The compound Poisson risk model with multiple thresholds. Insur Math Econ 42(2):617–627 · Zbl 1152.91592 · doi:10.1016/j.insmatheco.2007.06.008
[19] Lin SX, Willmot GE, Drekic S (2003) The classical risk model with a constant dividend barrier: analysis of the Gerber–Shiu discounted penalty function. Insur Math Econ 33(3):551–566 · Zbl 1103.91369 · doi:10.1016/j.insmatheco.2003.08.004
[20] Ming R-X, Wang W-Y, Xiao L-Q (2010) On the time value of absolute ruin with tax. Insur Math Econ 46(1):67–84 · Zbl 1231.91218 · doi:10.1016/j.insmatheco.2009.09.004
[21] Renaud J-F (2009) The distribution of tax payments in a Lévy insurance risk model with a surplus-dependent taxation structure. Insur Math Econ 45(2):242–246 · Zbl 1231.91230 · doi:10.1016/j.insmatheco.2009.07.004
[22] Yuen KC, Wang G, Li WK (2007) The Gerber–Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier. Insur Math Econ 40(1):104–112 · Zbl 1273.91456 · doi:10.1016/j.insmatheco.2006.03.002
[23] Wei L (2009) Ruin probability in the presence of interest earnings and tax payments. Insur Math Econ 45(1):133–138 · Zbl 1231.91249 · doi:10.1016/j.insmatheco.2009.05.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.