zbMATH — the first resource for mathematics

Quasi-stationary workload in a Lévy-driven storage system. (English) Zbl 1260.90020
Summary: This article we analyzes the quasi-stationary workload of a Lévy-driven storage system. More precisely, assuming the system is in stationarity, we study its behavior conditional on the event that the busy period \(T\) in which time \(0\) is contained has not ended before time \(t\), as \(t\to \infty\) . We do so by first identifying the double Laplace transform associated with the workloads at time \(0\) and time \(t\), on the event \(\{T>t\}\). This transform can be explicitly computed for the case of spectrally one-sided jumps. Then asymptotic techniques for Laplace inversion are relied upon to find the corresponding behavior in the limiting regime that \(t\to \infty\). Several examples are treated; for instance in the case of Brownian input, we conclude that the workload distribution at time \(0\) and \(t\) are both Erlang(2).
Reviewer: Reviewer (Berlin)

90B05 Inventory, storage, reservoirs
60G51 Processes with independent increments; Lévy processes
60G50 Sums of independent random variables; random walks
60K25 Queueing theory (aspects of probability theory)
60J99 Markov processes
93E20 Optimal stochastic control
Full Text: DOI arXiv
[1] DOI: 10.1023/A:1019104402024 · Zbl 0894.60088 · doi:10.1023/A:1019104402024
[2] DOI: 10.1007/978-3-642-65690-3 · doi:10.1007/978-3-642-65690-3
[3] DOI: 10.1239/jap/1231340225 · Zbl 1154.60348 · doi:10.1239/jap/1231340225
[4] DOI: 10.1239/jap/1300198139 · Zbl 1213.60147 · doi:10.1239/jap/1300198139
[5] Henrici P., Applied and Computational Complex Analysis (1977) · Zbl 0363.30001
[6] DOI: 10.2307/3212557 · Zbl 0302.60038 · doi:10.2307/3212557
[7] DOI: 10.2307/3215203 · Zbl 0839.60069 · doi:10.2307/3215203
[8] DOI: 10.2307/3212173 · Zbl 0234.60121 · doi:10.2307/3212173
[9] Kyprianou A., Introductory Lectures on Fluctuations of Lévy Processes with Applications (2006) · Zbl 1104.60001
[10] DOI: 10.3150/bj/1155735927 · Zbl 1130.60054 · doi:10.3150/bj/1155735927
[11] DOI: 10.2307/3215316 · Zbl 0818.60071 · doi:10.2307/3215316
[12] DOI: 10.1007/s11134-009-9146-5 · Zbl 1209.90117 · doi:10.1007/s11134-009-9146-5
[13] Palmowski Z., Prob. Math. Stat., 24 pp 339– (2004)
[14] Rivero , V. Symmetrization of Lévy processes and applications. (Unpublished manuscript), 2010.
[15] DOI: 10.2307/3212128 · Zbl 0147.36603 · doi:10.2307/3212128
[16] DOI: 10.2307/3212556 · Zbl 0309.60040 · doi:10.2307/3212556
[17] Vigon , V. Simplifiez vos Lévy en titillant la factorisation de Wiener-Hopf. Thèse. Laboratoire de Mathématiques de l’INSA de Rouen, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.