×

zbMATH — the first resource for mathematics

Character expansion for HOMFLY polynomials. III: All 3-strand braids in the first symmetric representation. (English) Zbl 1260.81134

MSC:
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Mironov A., J. High Energy Phys. 03 pp 034–
[2] DOI: 10.1090/S0273-0979-1985-15361-3 · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3
[3] Przytycki J. H., Kobe J. Math. 4 pp 115–
[4] Fulton W., Young Tableaux, with Applications to Representation Theory and Geometry (1997)
[5] DOI: 10.1016/0370-2693(90)91963-C · doi:10.1016/0370-2693(90)91963-C
[6] DOI: 10.1007/BF02096491 · Zbl 0768.57003 · doi:10.1007/BF02096491
[7] DOI: 10.1016/0550-3213(92)90524-F · Zbl 0938.81553 · doi:10.1016/0550-3213(92)90524-F
[8] DOI: 10.1016/0550-3213(93)90652-6 · Zbl 0941.57500 · doi:10.1016/0550-3213(93)90652-6
[9] DOI: 10.1016/0550-3213(94)00102-2 · Zbl 0990.81694 · doi:10.1016/0550-3213(94)00102-2
[10] DOI: 10.1016/S0550-3213(00)00761-6 · Zbl 1097.81742 · doi:10.1016/S0550-3213(00)00761-6
[11] DOI: 10.1016/j.nuclphysb.2010.03.012 · Zbl 1204.81097 · doi:10.1016/j.nuclphysb.2010.03.012
[12] Gelca R., Math. Proc. Camb. Phil. Soc. 133 pp 311–
[13] DOI: 10.1142/S021821650300238X · Zbl 1034.57005 · doi:10.1142/S021821650300238X
[14] DOI: 10.1007/s00220-005-1312-y · Zbl 1115.57009 · doi:10.1007/s00220-005-1312-y
[15] DOI: 10.2140/gt.2005.9.1253 · Zbl 1078.57012 · doi:10.2140/gt.2005.9.1253
[16] DOI: 10.1016/j.nuclphysb.2011.03.014 · Zbl 1215.81082 · doi:10.1016/j.nuclphysb.2011.03.014
[17] DOI: 10.1142/S0217751X04018245 · Zbl 1087.81051 · doi:10.1142/S0217751X04018245
[18] DOI: 10.4213/tmf5972 · doi:10.4213/tmf5972
[19] DOI: 10.1016/j.physd.2007.04.018 · Zbl 1183.81082 · doi:10.1016/j.physd.2007.04.018
[20] Alexandrov A., J. High Energy Phys. 12 pp 053–
[21] DOI: 10.1142/S0217751X09046278 · Zbl 1179.81127 · doi:10.1142/S0217751X09046278
[22] Eynard B., J. High Energy Phys. 0411 pp 031–
[23] Chekhov L., J. High Energy Phys. 0603 pp 014–
[24] Chekhov L., J. High Energy Phys. 0612 pp 026–
[25] DOI: 10.1142/S0218216593000064 · Zbl 0787.57006 · doi:10.1142/S0218216593000064
[26] DOI: 10.1090/S0002-9947-09-04691-1 · Zbl 1193.57006 · doi:10.1090/S0002-9947-09-04691-1
[27] DOI: 10.1007/s00023-010-0058-z · Zbl 1208.81149 · doi:10.1007/s00023-010-0058-z
[28] DOI: 10.1007/s11005-005-0008-8 · Zbl 1105.57011 · doi:10.1007/s11005-005-0008-8
[29] DOI: 10.1080/10586458.2006.10128956 · Zbl 1118.57012 · doi:10.1080/10586458.2006.10128956
[30] DOI: 10.1007/BF02102019 · Zbl 0832.57006 · doi:10.1007/BF02102019
[31] DOI: 10.1016/S0550-3213(00)00118-8 · Zbl 1036.81515 · doi:10.1016/S0550-3213(00)00118-8
[32] DOI: 10.1007/s002200100374 · Zbl 1018.81049 · doi:10.1007/s002200100374
[33] DOI: 10.4310/ATMP.1999.v3.n5.a5 · Zbl 0972.81135 · doi:10.4310/ATMP.1999.v3.n5.a5
[34] Labastida J. M. F., J. High Energy Phys. 0011 pp 007–
[35] DOI: 10.4310/MRL.2010.v17.n3.a9 · Zbl 1223.81155 · doi:10.4310/MRL.2010.v17.n3.a9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.