×

zbMATH — the first resource for mathematics

A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. (English) Zbl 1260.74029
Summary: A node-based smoothed finite element method (NS-FEM) using 3-node triangular elements is formulated for static, free vibration and buckling analyses of Reissner-Mindlin plates. The discrete weak form of the NS-FEM is obtained based on the strain smoothing technique over smoothing domains associated with the nodes of elements. The discrete shear gap (DSG) method together with a stabilization technique is incorporated into the NS-FEM to eliminate transverse shear locking and to maintain stability of the present formulation. A so-called node-based smoothed stabilized discrete shear gap method (NS-DSG) is then proposed. Several numerical examples are used to illustrate the accuracy and effectiveness of the present method.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
Software:
XFEM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Leissa AW (1987) Plate vibration research: 1981–1985: classical theory. Shock Vib Dig 19: 11–18 · doi:10.1177/058310248701900204
[2] Leissa AW (1987) A review of laminated composite plate buckling. Appl Mech Rev 40: 575–591 · doi:10.1115/1.3149534
[3] Liew KM, Xiang Y, Kitipornchai S (1995) Research on thick plate vibration: a literature survey. J Sound Vib 180: 163–176 · Zbl 1237.74002 · doi:10.1006/jsvi.1995.0072
[4] Mackerle J (1997) Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1992–1995). Eng Comput 14: 347–440 · Zbl 0983.74500 · doi:10.1108/02644409710178494
[5] Mackerle J (2002) Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1999–2002). Eng Comput 19: 520–594 · Zbl 1021.74001 · doi:10.1108/02644400210435843
[6] Zienkiewicz OC, Lefebvre D (1988) A robust triangular plate bending element of the ReissnerMindlin type. Int J Numer Methods Eng 26: 1169–1184 · Zbl 0634.73064 · doi:10.1002/nme.1620260511
[7] Ayad R, Dhatt G, Batoz JL (1998) A new hybrid-mixed variational approach for ReissnerMindlin plate. Int J Numer Methods Eng 42: 1149–1179 · Zbl 0912.73051 · doi:10.1002/(SICI)1097-0207(19980815)42:7<1149::AID-NME391>3.0.CO;2-2
[8] Lovadina C (1998) Analysis of a mixed finite element method for the ReissnerMindlin plate problems. Comput Methods Appl Mech Eng 163: 71–85 · Zbl 0962.74065 · doi:10.1016/S0045-7825(98)00003-6
[9] Taylor RL, Auricchio F (1993) Linked interpolation for Reissner–Mindlin plate element: Part II-A simple triangle. Int J Numer Methods Eng 36: 3043–3056 · Zbl 0780.73090 · doi:10.1002/nme.1620361802
[10] Belytschko T, Tsay CS (1983) A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int J Numer Meth Eng 19: 405–419 · Zbl 0502.73058 · doi:10.1002/nme.1620190308
[11] Belytschko T, Leviathan I (1992) Physical stabilization of the 4-node shell element with one-point quadrature. Comput Meth Appl Mech Eng 113: 321–350 · Zbl 0846.73058 · doi:10.1016/0045-7825(94)90052-3
[12] Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29: 1595–1638 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[13] César de Sá JMA, Natal Jorge RM (1999) New enhanced strain elements for incompatible problems. Int J Numer Methods Eng 44: 229–248 · Zbl 0937.74062 · doi:10.1002/(SICI)1097-0207(19990120)44:2<229::AID-NME503>3.0.CO;2-I
[14] Bathe KJ, Dvorkin EN (1985) A four-node plate bending element based on Mindlin–Reissener plate theory and a mixed interpolation. Int J Numer Methods Eng 21: 367–383 · Zbl 0551.73072 · doi:10.1002/nme.1620210213
[15] Tessler A, Hughes TJR (1985) A three-node Mindlin plate element with improved transverse shear. Comput Methods Appl Mech Eng 50: 71–101 · Zbl 0562.73069 · doi:10.1016/0045-7825(85)90114-8
[16] César de Sá JMA, Natal Jorge RM, Fontes Valente RA, Areias PMA (2002) Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int J Numer Methods Eng 53: 1721–1750 · Zbl 1114.74484 · doi:10.1002/nme.360
[17] Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alvesde Sousa RJ, Fontes Valente RA (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Methods Eng 75: 156–187 · Zbl 1195.74165 · doi:10.1002/nme.2250
[18] Bletzinger KU, Bischoff M, Ramm E (2000) A unified approach for shear-locking free triangular and rectangular shell finite elements. Int J Numer Methods Eng 75: 321–334
[19] Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50: 435–466 · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[20] Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on lagrangian kernels. Comput Methods Appl Mech Eng 193: 1035–1063 · Zbl 1060.74672 · doi:10.1016/j.cma.2003.12.005
[21] Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Engineering 63(11): 1559–1582 · Zbl 1145.74041 · doi:10.1002/nme.1326
[22] Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Engineering 61(13): 2316–2343 · Zbl 1075.74703 · doi:10.1002/nme.1151
[23] Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(29–30): 2777–2799 · Zbl 1128.74051 · doi:10.1016/j.cma.2006.06.020
[24] Rabczuk T, Belytschko T (2006) Application of meshfree particle methods to static fracture of reinforced concrete structures. Int J Fract 137(1-4): 19–49 · Zbl 1197.74175 · doi:10.1007/s10704-005-3075-z
[25] Rabczuk T, Areias PMA, Belytschko T (2007) A simplified meshfree method for shear bands with cohesive surfaces. Int J Numer Methods Eng 69(5): 993–1021 · Zbl 1194.74536 · doi:10.1002/nme.1797
[26] Rabczuk T, Bordas S, Zi G (2007) A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity. Comput Mech 40(3): 473–495 · Zbl 1161.74054 · doi:10.1007/s00466-006-0122-1
[27] Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6): 743–760 · Zbl 1161.74055 · doi:10.1007/s00466-006-0067-4
[28] Liu GR, Dai KY, Nguyen TT (2007) A smoothed element method for mechanics problems. Comput Mech 39: 859–877 · Zbl 1169.74047 · doi:10.1007/s00466-006-0075-4
[29] Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71: 902–930 · Zbl 1194.74432 · doi:10.1002/nme.1968
[30] Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Dai KY, Lam KY (2009) On the essence and the evaluation of the shape functions for the smoothed finite element method (sfem) (letter to editor). Int J Numer Methods Eng 77: 1863–1869 · Zbl 1181.74137 · doi:10.1002/nme.2587
[31] Nguyen-Xuan H, Bordas S, Nguyen-Dang H (2008) Smooth finite element methods: convergence, accuracy and properties. Int J Numer Methods Eng 74: 175–208 · Zbl 1159.74435 · doi:10.1002/nme.2146
[32] Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) A theoretical study on NS/ES-FEM: properties, accuracy and convergence rates. Int J Numer Methods Eng (in press). doi: 10.1002/nme.2941 · Zbl 1202.74180
[33] Dai KY, Liu GR, Nguyen TT (2007) An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elements Anal Des 43: 847–860 · doi:10.1016/j.finel.2007.05.009
[34] Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301: 803–820 · doi:10.1016/j.jsv.2006.10.035
[35] Nguyen-Xuan H, Nguyen-Thoi T (2008) A stabilized smoothed finite element method for free vibration analysis of Mindlin– Reissner plates. Commun Numer Methods Eng (in press). doi: 10.1002/cnm.1137 · Zbl 1172.74047
[36] Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197: 1184–1203 · Zbl 1159.74434 · doi:10.1016/j.cma.2007.10.008
[37] Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198: 165–177 · Zbl 1194.74453
[38] Le CV, Nguyen-Xuan H, Askes H, Bordas S, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng (in press). doi: 10.1002/nme.2897 · Zbl 1202.74177
[39] Bordas S, Rabczuk T, Nguyen-Xuan H, Nguyen Vinh P, Natarajan S, Bog T, Do Minh Q, Nguyen Vinh H (2008) Strain smoothing in FEM and XFEM. Comput Struct (in press). doi: 10.1016/j.compstruc.2008.07.006
[40] Liu GR (2010) A G space theory and a weakened weak (W 2) form for a unified formulation of compatible and incompatible methods: Part I theory and Part II applications to solid mechanics problems. Int J Numer Methods Eng 81:1093–1156 · Zbl 1183.74359
[41] Liu GR (2008) A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int J Comput Methods 2: 199–236 · Zbl 1222.74044 · doi:10.1142/S0219876208001510
[42] Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87: 14–26 · doi:10.1016/j.compstruc.2008.09.003
[43] Nguyen-Thoi T, Liu GR, Nguyen-Xuan H (2009) Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. Int J Comput Methods 6: 633–666 · Zbl 1267.74115 · doi:10.1142/S0219876209001954
[44] Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320: 1100–1130 · doi:10.1016/j.jsv.2008.08.027
[45] Nguyen-Xuan H, Liu GR, Nguyen-Thoi T, Nguyen-Tran C (2009) An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures. Smart Mater Struct 18: 065015 · Zbl 1267.74115 · doi:10.1088/0964-1726/18/6/065015
[46] Nguyen-Xuan H, Liu GR, Thai-Hoang C, Nguyen-Thoi T (2010) An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput Methods Appl Mech Eng 199: 471–489 · Zbl 1227.74083 · doi:10.1016/j.cma.2009.09.001
[47] Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H (2009) An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses in 2d solids using triangular mesh. Comput Mech 45: 23–44 · Zbl 1398.74382 · doi:10.1007/s00466-009-0415-2
[48] Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82: 917–938 · Zbl 1188.74073
[49] Cui X, Liu GR, Li G, Zhang GY, Zheng G (2010) Analysis of plates and shells using an edge-based smoothed finite element method. Comput Mech 45: 141–156 · Zbl 1202.74165 · doi:10.1007/s00466-009-0429-9
[50] Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3d linear and nonlinear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78: 324–353 · Zbl 1183.74299 · doi:10.1002/nme.2491
[51] Nguyen-Thoi T, Liu GR, Vu-Do HC, Nguyen-Xuan H (2009) A face-based smoothed finite element method (FS-FEM) for visco- elastoplastic analyses of 3d solids using tetrahedral mesh. Computer Methods in Applied Mechanics and Engineering 198: 3479–3498 · Zbl 1230.74193 · doi:10.1016/j.cma.2009.07.001
[52] Nguyen-Thoi T, Liu GR, Nguyen-Xuan H, Nguyen-Tran C (2009) Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Commun Numer Methods Eng (in press). doi: 10.1002/cnm.1291 · Zbl 1267.74115
[53] Zhang ZQ, Liu GR (2010) Temporal stabilization of the node-based smoothed finite element method (NS-FEM) and solution bound of linear elastostatics and vibration problems. Comput Mech (in press). doi: 10.1007/s00466-009-0420-5
[54] Liu GR, Nguyen-Thoi T, Lam KY (2008) A novel alpha finite element method (\(\alpha\)FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput Methods Appl Mech Eng 197: 3883–3897 · Zbl 1194.74433 · doi:10.1016/j.cma.2008.03.011
[55] Liu GR, Nguyen-Xuan H, Nguyen-Thoi T, Xu X (2009) A novel Galerkin-like weakform and a superconvergent alpha finite element method (S\(\alpha\)FEM) for mechanics problems using triangular meshes. J Comput Phys 228: 4055–4087 · Zbl 1273.74542 · doi:10.1016/j.jcp.2009.02.017
[56] Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S (2010) An alternative alpha finite element method (A\(\alpha\)fem) free and forced vibration analysis of solids using triangular meshes. J Comput Appl Math 223(9): 2112–2135 · Zbl 1423.74910 · doi:10.1016/j.cam.2009.08.117
[57] Thompson LL (2003) On optimal stabilized mitc4 plate bending elements for accurate frequency response analysis. Comput Struct 81: 995–1008 · doi:10.1016/S0045-7949(02)00405-4
[58] Liew KM, Wang J, Ng TY, Tan MJ (2004) Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method. J Sound Vib 276: 997–1017 · doi:10.1016/j.jsv.2003.08.026
[59] Lyly M, Stenberg R, Vihinen T (1993) A stable bilinear element for the Rissnerindlin plate model. Comput Methods Appl Mech Eng 110: 343–357 · Zbl 0846.73065 · doi:10.1016/0045-7825(93)90214-I
[60] Bischoff M, Bletzinger KU (2001) Stabilized dsg plate and shell elements. Trends in computational structural mechanics, CIMNE, Barcelona, Spain
[61] Bonet J, Burton AJ (1998) A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Commun Numer Methods Eng 14: 437–449 · Zbl 0906.73060 · doi:10.1002/(SICI)1099-0887(199805)14:5<437::AID-CNM162>3.0.CO;2-W
[62] Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WW (2000) Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. Int J Numer Methods Eng 47: 1549–1568 · Zbl 0989.74067 · doi:10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
[63] Bonet J, Marriott H, Hassan O (2001) An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications. Commun Numer Methods Eng 17: 551–561 · Zbl 1154.74307 · doi:10.1002/cnm.429
[64] Pires FMA, Neto EAD, Padilla JLD (2004) An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains. Commun Numer Methods Eng 20: 569–583 · Zbl 1302.74173 · doi:10.1002/cnm.697
[65] Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering 67: 841–867 · Zbl 1113.74075 · doi:10.1002/nme.1651
[66] Gee MW, Dohrmann CR, Key SW, Wall WA (2008) A uniform nodal strain tetrahedron with isochoric stabilization. Int J Numer Methods Eng 78: 429–443 · Zbl 1183.74275 · doi:10.1002/nme.2493
[67] Krysl P, Zhu B (2008) Locking-free continuum displacement finite elements with nodal integration International. J Numer Methods Eng 76: 1020–1043 · Zbl 1195.74182 · doi:10.1002/nme.2354
[68] Castellazzi G, Krysl P (2009) Displacement-based finite elements with nodal integration for Reissner–Mindlin plates. Int J Numer Methods Eng 80: 135–162 · Zbl 1176.74177 · doi:10.1002/nme.2622
[69] Zienkiewicz OC, Xu Z, Zeng LX, Samuelsson A, Wiberg NE (1993) Linked interpolation for Reissner–Mindlin plate elements: part I-a simple quadrilateral. Int J Numer Methods Eng 36: 3043–3056 · Zbl 0780.73090 · doi:10.1002/nme.1620361802
[70] Katili I (1993) A new discrete Kirchhoff–Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part II: an extended DKQ element for thick-plate bending analysis. Int J Numer Methods Eng 36: 1885–1908 · Zbl 0775.73264 · doi:10.1002/nme.1620361107
[71] Lee SJ (2004) Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain. J Sound Vib 278: 657–684 · doi:10.1016/j.jsv.2003.10.018
[72] Lee SJ, Han SE (2001) Free-vibration analysis of plates and shells with a nine-node assumed natural degenerated shell element. J Sound Vib 241: 605–633 · doi:10.1006/jsvi.2000.3313
[73] Liew KM, Chen XL (2004) Buckling of rectangular Mindlin plates subjected to partial in-plane edge loads using the radial point interpolation method. Int J Solids Struct 41: 1677–1695 · Zbl 1075.74533 · doi:10.1016/j.ijsolstr.2003.10.022
[74] Karunasena W, Kitipornchai S, Al-bermani FGA (1996) Free vibration of cantilevered arbitrary triangular mindlin plates. Int J Mech Sci 38: 431–442 · Zbl 0841.73034 · doi:10.1016/0020-7403(95)00060-7
[75] Morley LSD (1963) Skew plates and structures. Pergamon Press, NY · Zbl 0124.17704
[76] Abbassian F, Dawswell DJ, Knowles NC (1987) Free vibration benchmarks. Technical report Softback, 40 pp, Atkins Engineering Sciences, Glasgow, UK
[77] Leissa AW (1969) Vibration of plates. NASA, SP-160. Washington, DC
[78] Irie T, Yamada G, Aomura S (1980) Natural frequencies of mindlin circular plates. Appl Mech 47: 652–655 · Zbl 0441.73067 · doi:10.1115/1.3153748
[79] McGee OG, Leissa AW, Huang CS (1992) Vibrations of cantilevered skewed trapezodial and triangular plates with corner stress singularities. Mech Sci 34: 63–84 · doi:10.1016/0020-7403(92)90054-K
[80] Timoshenko SP, Gere JM (1970) Theory of elastic stability, 3rd edn. McGraw-Hill, New York
[81] Kitipornchai S, Xiang Y, Wang CM, Liew KM (1993) Buckling of thick skew plates. Int J Numer Methods Eng 36: 1299–1310 · Zbl 0772.73042 · doi:10.1002/nme.1620360804
[82] Tham LG, Szeto HY (1990) Buckling analysis of arbitrary shaped plates by spline finite strip method. Comput Struct 36: 729–735 · doi:10.1016/0045-7949(90)90087-I
[83] Azhari M, Hoshdar S, Bradford MA (2000) On the use of bubble functions in the local buckling analysis of plate structures by the spline finite strip method. Int J Numer Methods Eng 48: 583–593 · Zbl 0989.74076 · doi:10.1002/(SICI)1097-0207(20000610)48:4<583::AID-NME898>3.0.CO;2-A
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.