×

zbMATH — the first resource for mathematics

Parallel Jacobian-free Newton Krylov solution of the discrete ordinates method with flux limiters for 3D radiative transfer. (English) Zbl 1259.78048
A radiative transfer problem is considered in the form of an integro-differential equation with boundary conditions. In [W. F. Godoy and P. E. DesJardin, J. Comput. Phys. 229, No. 9, 3189–3213 (2010; Zbl 1187.65143)], the discrete ordinates method (DOM) and finite volume methods (FVMs) with flux limiters were applied to discretise the angular domain and the spatial domain, respectively. A Newton iteration yields the numerical solution of the resulting nonlinear systems of algebraic equations, where the linear systems are solved iteratively by the generalised minimal residual (GMRES) method, i.e., a Newton-Krylov technique is investigated. In the subsequent paper, W. F. Godoy and X. Liu consider Jacobian-free methods within the GMRES iteration to save memory and to reduce the computational effort.
In the GMRES method, the Jacobian matrix is avoided by formulating the required matrix-vector product as a derivative. The derivatives are either calculated analytically (semi-exact approach) or computed by numerical differentiation. The latter technique requires the application of smooth flux limiters. The authors investigate both the Gram-Schmidt algorithm and the Householder transformation for the required orthogonalisation in the Newton-Krylov method. The construction of appropriate preconditioners is not within the scope of this paper.
About half of the paper consists in the presentation of two test examples, in which the efficiency of the Jacobian-free approach is investigated in detail. In each example, the authors compare results for the step limiter and the van Leer limiter. The first example is a three-dimensional homogeneous isotropic scattering medium. The optimal choice of the increment within the numerical differentiation, which is used to avoid a computation of the Jacobian matrix, is examined. The second example is a three-dimensional non-homogeneous pure scattering medium modelling a stratocumulus cloud. Now the authors investigate a combined memory-shared and memory-distributed parallelisation using the software library MPI on a supercomputer. Spatial domain decompositions are employed for this purpose. The tests involve up to 2048 CPU cores and also different numbers of threads. The results demonstrate impressive speed-ups, and thus parallel efficiency is achieved.

MSC:
78M25 Numerical methods in optics (MSC2010)
65F10 Iterative numerical methods for linear systems
65H10 Numerical computation of solutions to systems of equations
65R20 Numerical methods for integral equations
65Y05 Parallel numerical computation
78A40 Waves and radiation in optics and electromagnetic theory
78A45 Diffraction, scattering
Software:
BLAS; LAPACK; MPI; NITSOL; Oracle
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Modest, M.F., Radiative heat transfer, (2003), Academic Press, Elsevier Science San Diego, CA
[2] Goody, R.M.; Yung, Y.L., Atmospheric radiation: theoretical basis, (1995), Oxford University Press New York, NY
[3] Chandrasekhar, S., Radiative transfer, (1960), Dover New York, NY · Zbl 0037.43201
[4] Bohren, C.F.; Huffman, D.R., Absorption and scattering of light by small particles, (1983), John Wiley & Sons New York, NY
[5] Coelho, P., Numerical simulation of the interaction between turbulence and radiation in reactive flows, Prog. ener. comb. sci., 33, 311-383, (2007)
[6] Knoll, D.A.; Keyes, D.E., Jacobian-free newton – krylov methods: a survey of approaches and applications, J. comput. phys., 193, 357-397, (2004) · Zbl 1036.65045
[7] Chisholm, T.T.; Zingg, D.W., A Jacobian-free newton – krylov algorithm for compressible turbulent fluid flows, J. comput. phys., 228, 3490-3507, (2009) · Zbl 1319.76033
[8] Knoll, D.A.; Park, H.; Smith, K., Application of the Jacobian-free newton – krylov method to nonlinear acceleration of transport source iteration in slab geometry, Nucl. sci. eng., 167, 122-132, (2011)
[9] Balsara, D., Fast and accurate discrete ordinates methods for multidimensional radiative transfer. part I, basic methods, J. quant. spec. rad. trans., 69, 671-707, (2001)
[10] M.R.J. Charest, C.P.T. Groth, Ö. L. Gülder, Solution of the equation of radiative transfer using a Newton-Krylov approach and adaptive mesh refinement, J. Comput. Phys., in press, http://dx.doi.org/10.1016/j.jcp.2011.11.016. · Zbl 1242.65283
[11] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM Philadelphia, PA · Zbl 1002.65042
[12] Brown, P.; Saad, Y., Convergence theory of nonlinear newton – krylov algorithms, SIAM J. optim., 4, 297-330, (1994) · Zbl 0814.65048
[13] Pernice, M.; Walker, H.F., NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. sci. stat. comput., 19, 302-318, (1998) · Zbl 0916.65049
[14] K. Lathrop, B. Carlson, Transport Theory, The Method of Discrete Ordinates, Tech. Rep. Report, LA-3251-MS, Los Alamos Scientific Laboratory, Los Alamos, NM (1965).
[15] Lathrop, K.; Carlson, B., Numerical solution of the Boltzmann transport equation, J. comput. phys., 1, 173-197, (1966) · Zbl 0171.13902
[16] Coelho, P.J., The role of ray effects and false scattering on the accuracy of the standard and modified discrete ordinates methods, J. quant. spec. rad. trans., 73, 231-238, (2002)
[17] BLAS - Basic Linear Algebra Subprograms, http://www.netlib.org/blas, 1979. · Zbl 0412.65022
[18] LAPACK - Linear Algebra Package, http://www.netlib.org/lapack, 1992.
[19] Brown, P.N.; Schumaker, D.E.; Woodward, C.S., Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration, J. comput. phys., 204, 760-783, (2005) · Zbl 1060.82001
[20] Evans, K.J.; Knoll, D.; Pernice, M., Development of a 2-D algorithm to simulate convection and phase transition efficiently, J. comput. phys., 219, 404-417, (2006) · Zbl 1102.76037
[21] Park, H.; Nourgaliev, R.R.; Martineau, R.C.; Knoll, D., On physics-based preconditioning of the navier – stokes equations, J. comput. phys., 228, 9131-9146, (2009) · Zbl 1395.65028
[22] Mack, C.J.; Schmid, P.J., A preconditioned Krylov technique for global hydrodynamic stability analysis of large-scale compressible flows, J. comput. phys., 229, 541-560, (2010) · Zbl 1253.76042
[23] Bernsen, E.; Dijkstra, H.A.; Thies, J.; Wubs, F.W., The application of jacobian-free newton – krylov methods to reduce the spin-up time of Ocean general circulation models, J. comput. phys., 229, 8167-8179, (2010) · Zbl 1196.86004
[24] Lucas, P.; van Zuijlen, A.H.; Bijl, H., Fast unsteady flow computations with a Jacobian-free newton – krylov algorithm, J. comput. phys., 229, 9201-9215, (2010) · Zbl 1427.76214
[25] Lemieux, J.F.; Tremblay, B.; Sedláček, J.; Tupper, P.; Thomas, S.; Huard, D.; Auclair, J.P., Improving the numerical convergence of viscous-plastic sea ice models with the Jacobian-free newton – krylov method, J. comput. phys., 229, 2840-2852, (2010) · Zbl 1184.86004
[26] Godoy, W.F.; DesJardin, P.E., On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media, J. comput. phys., 229, 3189-3213, (2010) · Zbl 1187.65143
[27] Jessee, J.P.; Fiveland, W.A., Bounded, high-resolution differencing schemes applied to the discrete ordinate method, J. thermophys. heat. trans., 11, 540-548, (1997)
[28] Coelho, P.J., A comparison of spatial discretization schemes for differential solution methods of the radiative transfer equation, J. quant. spec. rad. trans., 109, 189-200, (2008)
[29] Saad, Y.; Schultz, M.H., GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM J. sci. stat. comput., 7, 856-869, (1986) · Zbl 0599.65018
[30] Walker, H.F., Implementation of the GMRES method using Householder transformations, SIAM J. sci. stat. comput., 9, 152-163, (1988) · Zbl 0698.65021
[31] Gropp, W.; Lusk, E.; Skjellum, A., Using MPI portable parallel programming with the message-passing interface, (1999), The MIT Press London, England
[32] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, (1965), Dover New York, NY · Zbl 0515.33001
[33] Hirsch, C., Numerical computation of internal and external flows, Computational methods for inviscid and viscous flows, vol. 2, (1990), John Wiley & Sons Chichester, England · Zbl 0742.76001
[34] Fiveland, W.A., The selection of discrete ordinate quadrature sets for anisotropic scattering. fundamentals of radiation heat transfer, Asme, htd, 160, 89-96, (1991)
[35] Oaks, S.; Wong, H., Java threads, (2004), O’Reilly Sebastopol, CA
[36] Oracle Co., Java SE 6, http://www.oracle.com/technetwork/java/index.html, 2011.
[37] G.L. Taboada, S. Ramos, R.R. Expósito, J. Touriño, R. Doallo, Java in the high performance computing arena: Research, practice and experience, Sci. Comput. Prog., in press, http://dx.doi.org/10.1016/j.scico.2011.06.002.
[38] G.L. Taboada, J. Touriño, R. Doallo, F-MPJ: Scalable Java message-passing communications on parallel systems, J. Supercomput., in press, http://dx.doi.org/10.1007/s11227-009-0270-0.
[39] Taboada, G.L.; Touriño, J.; Doallo, R.; Shafi, A.; Baker, M.; Carpenter, B., Device level communication libraries for high-performance computing in Java, Concur. comput: pract. exper., 23, 2382-2403, (2011)
[40] W.F. Godoy, Numerical modeling of radiation heat transfer in absorbing, emitting and scattering media, Ph.D. Dissertation, University at Buffalo, The State University of New York, Buffalo, NY, 2009.
[41] Shafi, A.; Carpenter, B.; Baker, M., Nested parallelism for multi-core HPC systems using Java, J. parallel distr. comput., 69, 532-545, (2009)
[42] Gonçalves, P.; Coelho, P.J., Parallelization of the discrete ordinates method, Num. heat trans. part B: fund., 32, 151-173, (1997)
[43] Pincus, R.; Evans, K.F., Computational cost and accuracy in calculating three-dimensional radiative transfer: results for new implementations of Monte Carlo and SHDOM, J. atmos. sci., 66, 3131-3146, (2009)
[44] Cahalan, R.F., The I3RC - bringing together the most advanced radiative transfer tools for cloudy atmospheres, Bull. amer. meteor. soc., 86, 1275-1293, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.