×

zbMATH — the first resource for mathematics

A construction of weakly and non-weakly regular bent functions. (English) Zbl 1258.94034
Authors’ abstract: In this article a technique for constructing \(p\)-ary bent functions from near-bent functions is presented. This technique is then used to obtain both weakly regular and and non-weakly regular bent functions. In particular we present the first known infinite class of non-weakly regular bent functions.

MSC:
94A60 Cryptography
06E30 Boolean functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Canteaut, A.; Carlet, C.; Charpin, P.; Fontaine, C., On cryptographic properties of the cosets of \(R(1, m)\), IEEE trans. inform. theory, 47, 1494-1513, (2001) · Zbl 1021.94014
[2] Carlet, C.; Dobbertin, H.; Leander, G., Normal extensions of bent functions, IEEE trans. inform. theory, 50, 2880-2885, (2004) · Zbl 1184.94232
[3] Charpin, P.; Pasalic, E.; Tavernier, C., On bent and semi-bent quadratic Boolean functions, IEEE trans. inform. theory, 51, 4286-4298, (2005) · Zbl 1184.94234
[4] Helleseth, T.; Kholosha, A., Monomial and quadratic bent functions over the finite field of odd characteristic, IEEE trans. inform. theory, 52, 2018-2032, (2006) · Zbl 1177.94149
[5] Helleseth, T.; Kholosha, A., New binomial bent functions over the finite fields of odd characteristic, IEEE trans. inform. theory, 56, 4646-4652, (2010) · Zbl 1366.94774
[6] Khoo, K.; Gong, G.; Stinson, D., A new characterization of semi-bent and bent functions on finite fields, Des. codes cryptogr., 38, 279-295, (2006) · Zbl 1172.11311
[7] Kumar, P.V.; Scholtz, R.A.; Welch, L.R., Generalized bent functions and their properties, J. combin. theory ser. A, 40, 90-107, (1985) · Zbl 0585.94016
[8] Leander, G.; McGuire, G., Construction of bent functions from near-bent functions, J. combin. theory ser. A, 116, 960-970, (2009) · Zbl 1184.94240
[9] Lidl, R.; Niederreiter, H., Finite fields, Encyclopedia math. appl., vol. 20, (1997), Cambridge Univ. Press Cambridge
[10] Zheng, Y.; Zhang, X.-M., On plateaued functions, IEEE trans. inform. theory, 47, 1215-1223, (2001) · Zbl 0999.94026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.