×

zbMATH — the first resource for mathematics

Simulations of turbulent flow in a plane asymmetric diffuser. (English) Zbl 1258.76104
Summary: Large-eddy simulations (LES) of a planar, asymmetric diffuser flow have been performed. The diverging angle of the inclined wall of the diffuser is chosen as 8.5\(\deg\), a case for which recent experimental data are available. Reasonable agreement between the LES and the experiments is obtained. The numerical method is further validated for diffuser flow with the diffuser wall inclined at a diverging angle of 10\(\deg\), which has served as a test case for a number of experimental as well as numerical studies in the literature (LES, RANS). For the present results, the subgrid-scale stresses have been closed using the dynamic Smagorinsky model. A resolution study has been performed, highlighting the disparity of the relevant temporal and spatial scales and thus the sensitivity of the simulation results to the specific numerical grids used. The effect of different Reynolds numbers of the inflowing, fully turbulent channel flow has been studied, in particular, \( Re_b\;=\;4,500\), \( Re_b\;=\;9,000\) and \( Re_b\;=\;20,000\) with \( Re_b\) being the Reynolds number based on the bulk velocity and channel half width. The results consistently show that by increasing the Reynolds number a clear trend towards a larger separated region is evident; at least for the studied, comparably low Reynolds-number regime. It is further shown that the small separated region occurring at the diffuser throat shows the opposite behaviour as the main separation region, i.e. the flow is separating less with higher \( Re_b\). Moreover, the influence of the Reynolds number on the internal layer occurring at the non-inclined wall described in a recent study has also been assessed. It can be concluded that this region close to the upper, straight wall, is more distinct for larger \(Re_b\). Additionally, the influence of temporal correlations arising from the commonly used periodic turbulent channel flow as inflow condition (similar to a precursor simulation) for the diffuser is assessed.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76M20 Finite difference methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
Software:
STAR-CD
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Breuer, M., Jaffrézic, B., Peller, N., Manhart, M., Fröhlich, J., Hinterberger, C., Rodi, W., Deng, G., Chikhaoui, O., Šarić, S., Jakirlić, S.: A comparative study of the turbulent flow over a periodic arrangement of smoothly contoured hills. In: Lamballais, E., Friedrich, R., Geurts, B.J., Métais, O. (eds.) Direct and Large-Eddy Simulation VI, pp. 635–642. Springer, Dordrecht, The Netherlands (2006)
[2] Buice, C.U., Eaton, J.K.:Experimental investigation of flow through an asymmetric plane diffuser. CTR Annual Research Briefs, pp. 243–248 (1996)
[3] Buice, C.U., Eaton, J.K.: Experimental investigation of flow through an asymmetric plane diffuser. J. Fluids Eng. 122, 433–435 (2000) · doi:10.1115/1.483278
[4] Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005) · Zbl 1065.76116 · doi:10.1017/S0022112004002812
[5] Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A. 3(7), 1760–1765 (1991) · Zbl 0825.76334 · doi:10.1063/1.857955
[6] Gravemeier, V.: Variational multiscale large eddy simulation of turbulent flow in a planar asymmetric diffuser. CTR Annual Research Briefs, pp. 257–268 (2005)
[7] Gullman-Strand, J., Törnblom, O., Lindgren, B., Amberg, G., Johansson, A.V.: Numerical and experimental study of separated flow in a plane asymmetric diffuser. Int. J. Heat Fluid Flow 25, 451–460 (2004) · doi:10.1016/j.ijheatfluidflow.2004.02.012
[8] Iaccarino, G.: Prediction of a turbulent separated flow using commercial CFD codes. J. Fluids Eng. 123, 819–828 (2001) · doi:10.1115/1.1400749
[9] Kaltenbach, H.-J., Fatica, M., Mittal, R., Lund, T.S., Moin, P.: Study of flow in a planar asymmetric diffuser using large-eddy simulation. J. Fluid Mech. 390, 151–185 (1999) · Zbl 0983.76042 · doi:10.1017/S0022112099005054
[10] Leschziner, M.A.: Modelling turbulent separated flow in the context of aerodynamic applications. Fluid Dyn. Res. 38, 174–210 (2006) · Zbl 1130.76398 · doi:10.1016/j.fluiddyn.2004.11.004
[11] Lesieur, M., Métais, O.: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 45–82 (1996) · doi:10.1146/annurev.fl.28.010196.000401
[12] Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A. 4(3), 633–635 (1992) · doi:10.1063/1.858280
[13] Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000) · Zbl 0988.76044 · doi:10.1146/annurev.fluid.32.1.1
[14] Moin, P., Kim, J.: Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341–377 (1982) · Zbl 0491.76058 · doi:10.1017/S0022112082001116
[15] Na, Y., Moin, P.: Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379–405 (1998) · Zbl 0974.76035 · doi:10.1017/S0022112098009987
[16] Obi, S., Aoki, K., Masuda, S.: Experimental and computational study of turbulent separating flow in an asymmetric diffuser. In: Proceedings of the Ninth Symposium on Turbulent Shear Flows, pp. P305.1–P305.4. Kyoto, Japan (1993)
[17] Obi, S., Nikaido, H., Masuda, S.: Reynolds number effect on the turbulent separating flow in an asymmetric plane diffuser. In: ASME/JSMR Fluids Engineering Division Summer Meeting 1999, FEDSM 99-6976, ASME (1999)
[18] Ohta, T., Kajishima, T., Fujii, S., Nakagawa, S.: Direct numerical simulation of turbulent separating flow in an asymmetric plane diffuser. In: Hanjalić, K., Nagano, Y., Tummers, M. (eds.) Turbulence, Heat and Mass Transfer 4, pp. 441–448. Begell House, Redding, UK (2003)
[19] Piomelli, U.: High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids A. 5(6), 1766–1771 (1993) · doi:10.1063/1.860811
[20] Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349–374 (2002) · Zbl 1006.76041 · doi:10.1146/annurev.fluid.34.082901.144919
[21] Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer, Berlin, Germany (2005) · Zbl 1187.76456
[22] Schlatter, P., Stolz, S., Kleiser, L.: Evaluation of high-pass filtered eddy-viscosity models for large-eddy simulation of turbulent flows. J. Turbul. 6(5), (2005) · Zbl 1187.76501
[23] Schlüter, J.U., Wu, X., Pitsch, H.: Large-eddy simulation of a separated plane diffuser. AIAA Paper 2005-0672, (2005)
[24] Simpson, R.L.: Aspects of turbulent boundary-layer separation. Prog. Aerospace Sci. 32, 457–521 (1996) · doi:10.1016/0376-0421(95)00012-7
[25] Skote, M., Henningson, D.S.: Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107–136 (2002) · Zbl 1026.76029
[26] Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963) · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[27] Törnblom, O.: Experimental study of the turbulent flow in a plane asymmetric diffuser. KTH Stockholm, Sweden (2003)
[28] Townsend, A.A.: Self-preserving flow inside a turbulent boundary layer. J. Fluid Mech. 22, 773–797 (1965) · Zbl 0142.44502 · doi:10.1017/S0022112065001143
[29] Wu, X., Schlüter, J., Moin, P., Pitsch, H., Iaccarino, G., Ham, F.: Computational study on the internal layer in a diffuser. J. Fluid Mech. 550, 391–412 (2006) · Zbl 1222.76062 · doi:10.1017/S0022112005008116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.