Monofilament technical textiles: an analytical model for the prediction of the mechanical behaviour. (English) Zbl 1258.74176

Summary: The work presents an analytical model to evaluate the mechanical behaviour of dry monofilament technical textiles. The mechanical behaviour is obtained by a three-dimensional analytical model based on a theory of curved beam. Taking into consideration a unit cell, the macroscopic (or global) behaviour of the monofilament textile is investigated assuming the nonlinear constitutive behaviour of the fibres obtained by experimental tests. The comparison between the predicted analytical mechanical responses and the experimental test results is detailed.


74Q15 Effective constitutive equations in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74B20 Nonlinear elasticity
Full Text: DOI


[1] Ascough, J.; Bez, H. E.; Bricis, A. M.: A simple beam element, large displacement model for the finite element simulation of cloth drape, Journal of the textile institute 87, 152-165 (1996) · Zbl 0960.68705
[2] Belluzzi, O.: Scienza delle costruzioni, Scienza delle costruzioni 3 (1966)
[3] Cao, J.; Akkerman, R.; Boisse, P.; Chen, J.; Cheng, H. S.; De Graaf, E. F.; Gorczyca, J. L.; Harrison, P.; Hivet, G.; Launay, J.; Lee, W.; Liu, L.; Lomov, S. V.; Long, A.; De Luycker, E.; Morestin, F.; Padvoiskis, J.; Peng, X. Q.; Sherwood, J.; Stoilova, Tz.; Tao, X. M.; Verpoest, I.; Willems, A.; Wiggers, J.; Yu, T. X.; Zhu, B.: Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results, Composites part A 39, 1037-1053 (2008)
[4] Carvelli, V.; Poggi, C.: A homogenization procedure for the numerical analysis of woven fabric composites, Composites part A 32, 1425-1432 (2001)
[5] Carvelli, V.; Corazza, C.; Poggi, C.: Mechanical modelling of monofilament technical textiles, Computational materials science 42, 679-691 (2008)
[6] Gasser, A.; Boisse, P.; Hanklar, S.: Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests, Computational materials science 12, 7-20 (2000)
[7] Kawawabata, S.; Niwa, M.; Kawai, H.: The finite-deformation theory of plane-weave fabrics. Part I: The biaxial-deformation theory, Journal of the textile institute 64, 21-46 (1973)
[8] Kawawabata, S.; Niwa, M.; Kawai, H.: The finite-deformation theory of plane-weave fabrics. Part II: The uniaxial-deformation theory, Journal of the textile institute 64, 47-61 (1973)
[9] King, M. J.; Jearanaisilawong, P.; Socrate, S.: A continuum constitutive model for the mechanical behavior of woven fabrics, International journal of solids and structures 42, 3867-3896 (2005) · Zbl 1119.74351
[10] Lomov, S. V.; Huysmans, G.; Verpoest, I.: Hierarchy of textile structures and architecture of fabric geometric models, Textile research journal 71, 534-543 (2001)
[11] Lomov, S. V.; Chi, T. T.; Verpoest, I.; Peeters, T.; Roose, D.; Boisse, Ph.; Gasser, A.: Mathematical modelling of internal geometry and deformability of woven performs, International journal of forming processes 6, 413-442 (2003)
[12] Luo, Y.; Verpoest, I.: Biaxial tension and ultimate deformation of knitted fabric reinforcements, Composites part B 33, 197-203 (2002)
[13] Quaglini, V.; Corazza, C.; Poggi, C.: Experimental characterisation of orthotropic technical textiles under uniaxial and biaxial loading, Composites part A 39, 1331-1342 (2008)
[14] Sagar, T. V.; Potluri, P.; Hearle, J. W. S.: Mesoscale modelling of interlaced fibre assemblies using energy method, Computational materials science 28, 49-62 (2003)
[15] Seo, M. H.; Realff, M. L.; Pan, N.; Boyce, M.; Schwartz, P.; Backer, S.: Mechanical properties of fabric woven from yarns produced by different spinning technologies: yarn failure in woven fabric, Textile research journal 63, 123-134 (1993)
[16] Tarfaoui, M.; Drean, J. Y.: Predicting the stress – strain behaviour of woven fabrics using the finite element method, Textile research journal 71, 790-795 (2001)
[17] Toniolo, G.: La teoria Della matrice di trasmissione, (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.