×

Physical processes within a 2D granular layer during an impact. (English) Zbl 1258.74038

Summary: In this paper, the impact of a block on a coarse granular soil corresponding to rockfall events is investigated using the discrete element method. Different impacting particle and medium characteristics (impact point, impacting particle size and shape, sample height, etc.) are considered. The numerical results first exhibit the physical phenomena involved in the interaction between the impacting particle and the granular medium. The impact process starts with the partial energy exchange from the impacting particle to the soil. This phase is followed by the propagation of a shockwave from the impact point and a wave reflection on the bottom wall of the sample. A second energy exchange from soil particles to the impacting particle can occur if the reflected wave reaches the soil surface before the end of the impact. Based on these investigations, the impacting particle bouncing occurrence diagram is defined for various impacting particle sizes, incident kinematic parameters and sample heights. The bouncing occurrence diagram brings out three impact regimes. For a small impacting particle, the impact is mainly determined by the first interaction between the impacting particle and the soil, whereas for an intermediate-sized impacting particle, the shockwave propagation through the sample is the leading phenomenon. For a large impacting particle, bouncing is associated with the formation of a compact layer below the impacting particle.

MSC:

74E20 Granularity
74M20 Impact in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Dorren L.K.A. (2003) A review of rockfall mechanics and modelling approahces. Prog. Phys. Geogr. 27(1): 69–87 · doi:10.1191/0309133303pp359ra
[2] Guzzetti F., Crosta G., Detti R., Agliardi F. (2002) STONE: a computer program for the three dimensional simulation of rock-falls. Comput. Geosci. 28: 1079–1093 · doi:10.1016/S0098-3004(02)00025-0
[3] Bozzolo, D., Pamini, R., Hutter, K.: Rockfall analysis–a mathematical model and its test with field data. In: Proceedings of the 5th international symposium on landslides (Lausanne, Switzerland) 1, pp. 555–563 (1988)
[4] Descoeudres, F., Zimmermann, T.: Three-dimensional dynamic calculation of rockfalls. In: Proceedings of the 6th international congress of rock mechanics, Montreal, pp. 337–342 (1987)
[5] Falcetta J.L. (1985) Un nouveau modèle de calcul de trajectoires de blocs rocheux. Rev. Fr. Geotech. 30: 11–17
[6] Kobayashi Y., Harp E.L., Kagawa T. (1990) Simulation of rockfalls triggered by earthquakes. Rock Mech. Rock Eng. 23: 1–20 · doi:10.1007/BF01020418
[7] Pfeiffer T., Bowen T. (1989) Computer simulation of rockfalls. Bull. Ass. Eng. Geol. 26(1): 135–146
[8] Laouafa S., Nicot F. (2003) Modélisation numérique de l’impact d’un bloc rocheux sur un sol composé d’éboulis. Rev. Fr. Géotech. 109: 87–97
[9] Azzoni, A., Rossi, P.P., Drigo, E., Giani, G.P., Zaninetti, A.: In situ observations of rockfalls analysis parameters. In: Landslides. Balkema Bell (ed.), Rotterdam, pp. 307–314 (1991)
[10] Ciamarra M.P., Lara A.H., Lee A.T., Goldman D.I., Vishik I., Swinney H.L. (2004) Dynamics of drag and force distributions for projectile impact in a granular medium. Phys. Rev. Lett. 92(194301): 1–4
[11] Rioual F., Valance A., Bideau D. (2000) Experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E. 62: 2450–2459 · doi:10.1103/PhysRevE.62.2450
[12] Rioual F., Valance A., Bideau D. (2003) Collision process of a bead on a two-dimensional packing: importance of the inter-granular contacts. Europhys. Lett. 61(1): 194–200 · doi:10.1209/epl/i2003-00212-8
[13] Beladjine, D., Ammi, M., Oger, L., Valance, A.: Collision between an incident bead and a three-dimensional granular packing. Phys. Rev. E 75, 061305, 1–12 (2007)
[14] Beladjine, D., Valance, A., Ammi, M., Oger, L.: Experimental and numerical study of the collision between an incident bead and a three dimensional granular packing. In: Proceedings of international congongress on powders and grains. Stuttgart, Germany, pp. 1207–1210 (2005)
[15] Oger L., Ammi M., Valance A., Beladjine D. (2005) Discrete element method to study the collision of one rapid sphere on 2D and 3D packings. Eur. Phys. J. E 17: 467–476 · Zbl 1388.74024 · doi:10.1140/epje/i2005-10022-x
[16] Nishida M., Tanaka K., Matsumoto Y. (2004) Discrete element method simulation of the restitutive characteristics of a steel spherical impacting particle from a particulate aggregation. JSME Int. J. 47(3): 438–447 · doi:10.1299/jsmea.47.438
[17] Tanaka K., Nishida M., Kunimochi T., Takagi T. (2002) Discrete element simulation and experiment for dynamic response of two-dimensional granular matter to the impact of a spherical impacting particle. Powder Technol. 124: 160–173 · doi:10.1016/S0032-5910(01)00489-2
[18] Toiya M., Hettinga J., Losert W. (2007) 3D imaging of particle motion during penetrometer testing. From microscopic to macroscopic soil mechanics. Granul. Matter 9: 323–329 · doi:10.1007/s10035-007-0044-4
[19] Itasca Consulting Group: PFC2D Theory and Background. Itasca, Minneapolis (1999)
[20] Cundall P.A., Strack O.D.L. (1979) A discrete numerical model for granular assemblies. Geotechnique 29: 47–65 · doi:10.1680/geot.1979.29.1.47
[21] Cundall, P.A.: Computer simulations of dense spheres assemblies. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of Granular Materials. Elsevier Science Publisher B.V., Amsterdam, pp. 113–123 (1988)
[22] Mindlin R.D., Deresiewicz H. (1953) Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20: 327–344 · Zbl 0051.41202
[23] Itasca Consulting Group: PFC2D User’s Manual. Itasca, Minneapolis (1999)
[24] Kirkby M.J., Statham I. (1975) Surface movement and scree formation. J. Geol. 83: 349–362 · doi:10.1086/628097
[25] Deluzarche R., Cambou B. (2006) Discrete numerical modelling of rockfill dams. Int. J. Numer. Anal. Meth. Geomech. 30: 1075–1096 · Zbl 1196.74113 · doi:10.1002/nag.514
[26] Bertrand D., Nicot F., Gotteland P., Lambert S., Derache F. (2006) Modelling a geo-composite cell using discrete analysis. Comput. Geotech. 32(8): 564–577 · doi:10.1016/j.compgeo.2005.11.004
[27] Goodman R.E. (1980) Introduction to Rocks Mechanics. PWS Publishing Company, Boston
[28] Bagi K. (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7: 31–43 · Zbl 1094.74058 · doi:10.1007/s10035-004-0187-5
[29] Crassous J., Beladjine D., Valance A. (2007) Impact of a projectile on a granular medium described by a collision model. Phys. Rev. Lett. 99(24): 248001 · doi:10.1103/PhysRevLett.99.248001
[30] Frémond M. (1995) Rigid bodies collisions. Phys. Lett. A 204: 33–41 · Zbl 1020.70501 · doi:10.1016/0375-9601(95)00418-3
[31] Goldsmith, W.: Impact: the theory and physical behaviour of colliding solids. Doved (1960) · Zbl 0122.42501
[32] Stronge W.J. (2000) Impacts Mechanics. Cambridge University Press, Cambridge · Zbl 0961.74002
[33] Thornton C., Ning Z. (1998) A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 99: 154–162 · doi:10.1016/S0032-5910(98)00099-0
[34] Campbell C.S. (2003) A problem related to the stability of force chains. Granul. Matter 5: 129–134 · Zbl 1092.74511 · doi:10.1007/s10035-003-0138-6
[35] Coste C., Falcon E., Fauve S. (1997) Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E. 56(5): 6104–6117 · doi:10.1103/PhysRevE.56.6104
[36] Job S., Melo F., Sokolow A., Sen S. (2007) Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10: 13–20 · Zbl 1200.74032 · doi:10.1007/s10035-007-0054-2
[37] Hostler, S.R., Brennen, C.E.: Pressure wave propagation in granular bed. Phys. Rev. E 72(3): 031303, 1–13 (2005)
[38] Sadd M.H., Adhikari G., Cardoso F. (2000) DEM simulation of wave propagation in granular materials. Powder Technol. 109: 222–233 · doi:10.1016/S0032-5910(99)00238-7
[39] Somfai E., Roux J.N., Snoeijer J.H., Van Hecke M., Van Saarloos W. (2006) Elastic wave propagation in confined granular systems. Phys. Rev. E. 72(021301): 1–18
[40] Radjai F., Wolf D.E., Jean M., Moreau J.J. (1998) Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1): 61–64 · doi:10.1103/PhysRevLett.80.61
[41] Wolf, D.E.: Modelling and computer simulation of granular media. In: Hoffmann, K.H., Schreiber, M. (eds.) Computational Physics. Springer, Heidelberg (1996) · Zbl 0861.73016
[42] Bourrier, F., Nicot, F., Darve, F.: Rockfall modelling: numerical simulation of the impact of a particle on a coarse granular medium. In: Proceedings of 10th international congress on numerical model in geomechanics, Rhodes, pp. 699–705 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.