×

zbMATH — the first resource for mathematics

On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method. (English) Zbl 1258.65049
The authors present methods for approximating the Jacobian-vector product for the Jacobian-free Newton-Krylov method including finite difference schemes, which are forward, backward and central finite difference schemes, and the finite difference step size. The error of these schemes is analyzed and the theoretical basis for choosing the finite difference step size is presented. Finally, the applicability of the proposed method is illustrated by solving a radiation diffusion problem and the Bratu problem. Numerical results demonstrate the effectiveness of the finite difference methods.

MSC:
65H10 Numerical computation of solutions to systems of equations
65N06 Finite difference methods for boundary value problems involving PDEs
35J60 Nonlinear elliptic equations
Software:
NITSOL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Simoncini, V.; Szyld, D.B., Recent computational developments in Krylov subspace methods for linear systems, Numer. linear algebra appl., 14, 1-59, (2007) · Zbl 1199.65112
[2] Brown, P.N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. sci. stat. comput., 11, 450-481, (1990) · Zbl 0708.65049
[3] Brown, P.N.; Saad, Y., Convergence theory of nonlinear newton – krylov algorithms, SIAM J. optim., 4, 297-330, (1994) · Zbl 0814.65048
[4] Knoll, D.A.; Keyes, D.A., Jacobian-free newton – krylov method: a survey of approaches and applications, J. comput. phys., 193, 357-397, (2004) · Zbl 1036.65045
[5] Pernice, M.; Walker, H.F., NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. sci. comput., 19, 302-318, (1998) · Zbl 0916.65049
[6] An, H.-B.; Bai, Z.-Z., A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations, Appl. numer. math., 57, 3, 235-252, (2007) · Zbl 1123.65040
[7] An, H.-B.; Mo, Z.-Y.; Xu, X.-W.; Liu, X., On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations, J. comput. phys., 228, 5, 3268-3287, (2009) · Zbl 1163.65059
[8] Brown, P.N.; Walker, H.F.; Wasyk, R.; Woodward, C.S., On using approximate finite differences in matrix-free newton – krylov methods, SIAM J. numer. anal., 46, 1892-1911, (2008) · Zbl 1183.65052
[9] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. comput., 7, 856-869, (1986) · Zbl 0599.65018
[10] Ortega, J.M.; Rheinboldt, W.C., Iterative solution of nonlinear equations in several variables, (2000), SIAM Philadelphia · Zbl 0949.65053
[11] Kelley, C.T., Iterative methods for linear and nonlinear equations, (1995), SIAM Philadelphia · Zbl 0832.65046
[12] A.M. Collier, A.C. Hindmarsh, R. Serban, C.S. Woodward, User Documentation for KINSOL v2.5.0, Technical Report UCRL-SM-208116, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, 2006.
[13] Mousseau, V.A.; Knoll, D.A.; Rider, W.J., Physics-based preconditioning and the newton – krylov method for non-equilibrium radiation diffusion, J. comput. phys., 160, 743-765, (2000) · Zbl 0949.65092
[14] Mousseau, V.A.; Knoll, D.A., New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion, J. comput. phys., 190, 42-51, (2003) · Zbl 1027.65129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.