# zbMATH — the first resource for mathematics

Permutation polynomials over finite fields from a powerful lemma. (English) Zbl 1258.11100
Finite Fields Appl. 17, No. 6, 560-574 (2011); corrigenda ibid. 30, 153-154 (2014).
The main results of this paper are contained in the following theorem.
Theorem 3.1. Let $$q$$ be a prime power, and let $$r \geq 1$$ and $$n \geq 1$$ be positive integers. Let $$B(x)$$, $$L_1(x),\dots,L_r(x) \in\mathbb{F}_q[x]$$ be $$q$$-polynomials, $$g(x) \in\mathbb{F}_{q^n}[x]$$, $$h_1(x),\dots,h_r(x) \in \mathbb{F}_q[x]$$ and $$\delta_1,\dots,\delta_r \in\mathbb{F}_{q^n}$$ such that $$B(\delta_i) \in {\mathbb{F}}_q$$ and $$h_i(B(\mathbb{F}_{q^n})) \subseteq\mathbb{F}_q$$. Then
$f(x) = g(B(x)) + \sum_{i=1}^r (L_i(x)+\delta_i) h_i(B(x))$ is a permutation polynomial of $$\mathbb{F}_{q^n}$$ if and only if
(1)
$$B(g(x)) + \sum_{i=1}^r (L_i(x)+B(\delta_i)) h_i(x)$$ permutes $$B(\mathbb{F}_{q^n})$$; and
(2)
for any $$y \in B\left(\mathbb{F}_{q^n}\right)$$ $$\sum_{i=1}^r L_i(x)h_i(y)$$ permutes $$\ker(B)$$.
Moreover (2) is equivalent to $$\gcd\left(\sum_{i=1}^r l_i(x)h_i(y),b(x)\right)=1$$ for any $$y \in\mathbb{F}_q$$, where $$l_i(x)$$ and $$b(x)$$ are the conventional $$q$$-associates of $$L_i(x)$$ and $$B(x)$$.
This theorem generalizes earlier results on permutation polynomials and gives new classes of such polynomials.
Added in 2014: A condition has been corrected in the corrigenda [ibid. 30, 153–154 (2014; Zbl 1297.11150)].

##### MSC:
 11T06 Polynomials over finite fields
Full Text:
##### References:
 [1] Akbary, A.; Ghioca, D.; Wang, Q., On constructing permutations of finite fields, Finite fields appl., 17, 51-67, (2011) · Zbl 1281.11102 [2] Akbary, A.; Wang, Q., A generalized Lucas sequence and permutation binomials, Proc. amer. math. soc., 134, 15-22, (2005) · Zbl 1137.11355 [3] Akbary, A.; Wang, Q., On polynomials of the form $$x^r f(x^{q - 1} / \ell)$$, Int. J. math. math. sci., (2007), Article ID 23408 [4] Charpin, P.; Kyureghyan, G., When does $$F(X) + \gamma \operatorname{Tr}(H(X))$$ permute $$\mathbb{F}_{p^n}$$?, Finite fields appl., 15, 5, 615-632, (2009) · Zbl 1229.11153 [5] Charpin, P.; Kyureghyan, G., On a class of permutation polynomials over $$\mathbb{F}_{2^n}$$, (), 368-376 · Zbl 1180.11038 [6] Blokhuis, A.; Coulter, R.S.; Henderson, M.; OʼKeefe, C.M., Permutations amongst the Dembowski-Ostrom polynomials, (), 37-42 · Zbl 1009.11064 [7] Ding, C., Linear complexity of generalized cyclotomic binary sequences of order 2, Finite fields appl., 3, 159-174, (1997) · Zbl 0908.11062 [8] Ding, C.; Helleseth, T.; Shan, W., On the linear complexity of Legendre sequences, IEEE trans. inform. theory, 44, 1276-1278, (1998) · Zbl 0912.94014 [9] Ding, C.; Xiang, Q.; Yuan, J.; Yuan, P., Explicit classes of permutation polynomials over GF($$3^{3 m}$$), Sci. China ser. A, 53, 639-647, (2009) · Zbl 1215.11113 [10] Ding, C.; Yuan, J., A family of skew Hadamard difference sets, J. combin. theory ser. A, 113, 1526-1535, (2006) · Zbl 1106.05016 [11] Kyureghyan, G., Constructing permutations of finite fields via linear translators, J. combin. theory ser. A, 118, 1052-1061, (2011) · Zbl 1241.11136 [12] Laigle-Chapuy, Y., Permutation polynomials and applications to coding theory, Finite fields appl., 13, 58-70, (2007) · Zbl 1107.11048 [13] Lidl, R.; Niederreiter, H., Finite fields, Encyclopedia math. appl., vol. 20, (1997), Cambridge University Press Cambridge [14] Lidl, R.; Niederreiter, H., Introduction to finite fields and their applications, (1986), Cambridge University Press Cambridge · Zbl 0629.12016 [15] Marcos, J.E., Specific permutation polynomials over finite fields, Finite fields appl., 17, 105-112, (2011) · Zbl 1261.11080 [16] Masuda, A.M.; Zieve, M.E., Permutation binomials over finite fields, Trans. amer. math. soc., 361, 4169-4180, (2009) · Zbl 1239.11139 [17] Mullen, G.L., Permutation polynomials over finite fields, (), 131-151 · Zbl 0808.11069 [18] Park, Y.H.; Lee, J.B., Permutation polynomials and group permutation polynomials, Bull. aust. math. soc., 63, 67-74, (2001) · Zbl 0981.11039 [19] Rivest, R.L.; Shamir, A.; Adelman, L.M., A method for obtaining digital signatures and public-key cryptosystems, ACM commun. comput. algebra, 21, 120-126, (1978) · Zbl 0368.94005 [20] Schwenk, J.; Huber, K., Public key encryption and digital signatures based on permutation polynomials, Electron. lett., 34, 759-760, (1998) [21] Wang, Q., Cyclotomic mapping permutation polynomials over finite fields, (), 119-128 · Zbl 1154.11342 [22] Zeng, X.; Zhu, X.; Hu, L., Two new permutation polynomials with the form $$(x^{2^k} + x + \delta)^s + x$$ over $$\mathbb{F}_{2^n}$$, Appl. algebra engrg. comm. comput., 21, 145-150, (2010) · Zbl 1215.11116 [23] Zieve, M.E., Some families of permutation polynomials over finite fields, Int. J. number theory, 4, 851-857, (2008) · Zbl 1204.11180 [24] Zieve, M.E., On some permutation polynomials over $$\mathbb{F}_q$$ of the form $$x^r h(x^{(q - 1) / d})$$, Proc. amer. math. soc., 137, 2209-2216, (2009) · Zbl 1228.11177 [25] Zieve, M.E., Classes of permutation polynomials based on cyclotomy and an additive analogue, (), 355-361 · Zbl 1261.11081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.