×

zbMATH — the first resource for mathematics

Response of anisotropic nonlinearly viscoelastic solids. (English) Zbl 1257.74032
Summary: Despite the technological relevance of anisotropic nonlinear viscoelastic solids, little effort has been expended in the development of specific constitutive theories. In this study we develop a constitutive model for describing the nonlinear response of anisotropic viscoelastic solids that might be well suited to describe the response of biological and geological solids. The model is an integral model that takes into account the history of deformation of the body. Using the model a few boundary value problems are studied, namely the time dependent extension and shearing of such bodies.

MSC:
74D10 Nonlinear constitutive equations for materials with memory
74E10 Anisotropy in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pipkin, A.C., Journal of Mechanics and Physics of Solids 16 pp 59– (1968) · Zbl 0158.43601 · doi:10.1016/0022-5096(68)90016-1
[2] Wineman, A.S., Journal of Applied Mechanics 39 pp 946– (1972) · doi:10.1115/1.3422896
[3] Thomson, W., Proceedings of the Royal Society of London A 14 pp 289– (1965) · doi:10.1098/rspl.1865.0052
[4] Voigt, W., Annalen der Physik 283 pp 671– (1892) · JFM 24.0932.01 · doi:10.1002/andp.18922831210
[5] Rajagopal, K.R., Quarterly Journal of Mechanics and Applied Mathematics 56 pp 311– (2003) · Zbl 1108.74344 · doi:10.1093/qjmam/56.2.311
[6] Wineman, A.S., Mechanical Response of Polymers, An Introduction (2000)
[7] Johnson, G.A., Advances in Bioengineering 22 pp 245– (1992)
[8] Bowen, R.M., Mechanics of Mixtures, in Continuum Physics, Vol. III (1976)
[9] Atkin, R.J., Journal of the Institute of Mathematics and Applications 17 pp 153– (1976) · Zbl 0355.76004 · doi:10.1093/imamat/17.2.153
[10] Truesdell, C., Rational Thermodynamics (1984) · Zbl 0598.73002 · doi:10.1007/978-1-4612-5206-1
[11] Samohyl, I., Thermodynamics of Irreversible Processes in Fluid Mixtures (1987)
[12] Rajagopal, K.R., Mechanics of Mixtures (1995) · Zbl 0941.74500 · doi:10.1142/2197
[13] Rajagopal, K.R., International Journal of Engineering Science 24 pp 1453– (1986) · Zbl 0594.73007 · doi:10.1016/0020-7225(86)90074-1
[14] Prasad, S.C., Mathematics and Mechanics of Solids 11 pp 91– (2006) · doi:10.1177/1081286504046484
[15] Spencer, A.J.M., in Continuum Physics pp 259– (1971)
[16] Fung, Y.C., Biomechanics: Mechanical Properties of Living Tissues (1981) · doi:10.1007/978-1-4757-1752-5
[17] Linz, P., Analytical and Numerical Methods for Volterra Equations (1985) · Zbl 0566.65094 · doi:10.1137/1.9781611970852
[18] Wineman, A.S., Universal deformations of incompressible simple materials (1967)
[19] Carroll, M.M., International Journal of Engineering Science 5 pp 515– (1967) · doi:10.1016/0020-7225(67)90038-9
[20] Fosdick, R.L., Archive for Rational Mechanics and Analysis 29 pp 272– (1968) · Zbl 0164.27305 · doi:10.1007/BF00276728
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.