×

Analytical proof on the existence of chaos in a generalized Duffing-type oscillator with fractional-order deflection. (English) Zbl 1257.34030

Summary: This paper gives an analytical proof of the existence of chaos in a generalized Duffing-type oscillator with fractional-order deflection. The analytical expressions of the two homoclinic orbits which connect a hyperbolic saddle point are solved. Then, Melnikov’s procedure for the definition of the criteria for transversal intersection of the stable and unstable manifolds is shown. In this process, we found that the expressions of the Melnikov functions could not be solved analytically, mainly because the homoclinic orbits are highly complicated. To this end, an effective numerical algorithm is proposed to compute the corresponding Melnikov functions, and, using the presented algorithms, the critical parameter curve for the existence of chaos in the Smale horse sense is shown. We also give the simulation graph depicting the intersection of stable and unstable manifolds, which can make the generation mechanism of chaotic dynamics more clear. Therefore, we provide a rigorous theoretical foundation to support studies and applications of this important class of dynamical systems.

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
34A08 Fractional ordinary differential equations
65P20 Numerical chaos
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Xu, J. X.; Yan, R.; Zhang, W. N., An algorithm for Melnikov functions and application to a chaotic rotor, SIAM Journal on Scientific Computing, 26, 1525-1546 (2005) · Zbl 1086.34041
[2] Tucker, W., The Lorenz attractor exists, Comptes Rendus de I’Académie des Sciences-Series I-Mathematics, 328, 1197-1202 (1990) · Zbl 0935.34050
[3] Li, Z.; Chen, G. R.; Halang, W. A., Homoclinic and heteroclinic orbits in a modified Lorenz system, Information Science, 165, 235-245 (2004) · Zbl 1057.37019
[4] Cveticanin, L., Oscillator with fraction order restoring force, Journal of Sound and Vibration, 320, 1064-1077 (2008)
[5] Guckenheimer, J.; Holmes, P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of VectorFields (1983), Springer-Verlag: Springer-Verlag New York
[6] Wiggins, S., Global Bifurcations and Chaos: Analytical Methods (1988), Springer: Springer New York · Zbl 0661.58001
[7] Cveticanin, L.; Zukovic, M., Melnikov’s criteria and chaos in systems with fractional order deflection, Journal of Sound and Vibrations, 326, 768-779 (2009)
[8] Prathap, G.; Varadan, T. K., The inelastic large deformation of beams, Journal of Applied Mechanics, 43, 689-690 (1976)
[9] Lo, C. C.; Gupta, S. D., Bending of a nonlinear rectangular beam in large deflection, Journal of Applied Mechanics, 45, 213-215 (1978)
[10] Lewis, G.; Monasa, F., Large deflections of Cantilever beams of non-linear material of the Ludwick type subjected to an end moment, International Journal of Non-Linear Mechanics, 17, 1-6 (1982) · Zbl 0487.73058
[11] Russell, D.; Rossing, T., Testing the nonlinearity of piano hammers using residual shock spectra, Acta Acustica United with Acustica, 84, 967-975 (1998)
[12] Patten, W. N.; Sha, S.; Mo, C., A vibration model of open celled polyurethane foam automotive seat cushions, Journal of Sound and Vibration, 217, 145-161 (1998)
[13] C.V. Jutte, Generalized synthesis methodology of nonlinear springs for prescribed load—displacement functions, Ph.D Dissertation, Mechanical Engineering, The University of Michigan, 2008.; C.V. Jutte, Generalized synthesis methodology of nonlinear springs for prescribed load—displacement functions, Ph.D Dissertation, Mechanical Engineering, The University of Michigan, 2008.
[14] Rhoads, J. F., Generalized parametric resonance in electrostatically actuated micromechanical oscillators, Journal of Sound and Vibration, 296, 797-829 (2006)
[15] Rhoads, J. F., Tunable micromechanical filters that exploit parametric resonance, Journal of Vibration and Acoustics, 127, 423-430 (2005)
[16] C. Cortopassi, O. Englander, Nonlinear springs for increasing the maximum stable deflection of MEMS electrostatic gap closing actuators, UC Berkeley, March 10, 2009.; C. Cortopassi, O. Englander, Nonlinear springs for increasing the maximum stable deflection of MEMS electrostatic gap closing actuators, UC Berkeley, March 10, 2009.
[17] Wang, R. Q.; Jing, Z. J., Chaos control of chaotic pendulum system, Chaos, Solitons and Fractals, 21, 201-207 (2004) · Zbl 1045.37016
[18] Chen, G. R.; Dong, X., From Chaos to Order, Perspectives, Methodologies and Applications (1998), World Scientific: World Scientific Singapore
[19] Kozic, S.; Hasler, M., Low-density codes based on chaotic systems for simple encoding, IEEE Transactions on Circuits and Systems. I, 56, 405-415 (2009) · Zbl 1469.94077
[20] Loría, A.; Zavala-Río, A., Adaptive tracking control of chaotic systems with applications to synchronization, IEEE Transactions on Circuits and Systems. I, 54, 2019-2029 (2007) · Zbl 1374.93184
[21] Alexander, J. T.; Wallace, K. S.T.; Chen, G. R.; Gauthier, A., Chaos control in Duffing system using impulsive parametric perturbations, IEEE Transactions on Circuits and Systems. II, 57, 305-309 (2010)
[22] Mirus, K. A.; Sprott, J. C., Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations, Physical Review E, 59, 5313-5324 (1999)
[23] Xu, W.; Feng, J. Q.; Rong, H. W., Melnikov’s method for a general nonlinear vibro-impact oscillator, Nonlinear Analysis, 71, 418-426 (2009) · Zbl 1176.34052
[24] Shaw, S. W.; Holmes, P. J., Periodically forced linear oscillator with impacts—chaos and long period motions, Physical Review Letters, 51, 623-626 (1983)
[25] Brogliato, B., Nonsmooth Mechanics: Models, Dynamics and Control (1999), Springer-Verlag: Springer-Verlag London · Zbl 0917.73002
[26] Popp, K.; Stelter, P., Stick-slip vibrations and chaos, Philosophical Transactions of the Royal Society of London. Series A, 332, 89-105 (1990) · Zbl 0709.70019
[27] Kunze, M., Non-Smooth Dynamical Systems (2000), Springer-Verlag: Springer-Verlag Berlin, Germany · Zbl 0965.34026
[28] Dankowicz, H.; Nordmark, A., On the origin and bifurcations of stitch-slip oscillations, Physica D, 136, 280-302 (1999) · Zbl 0963.70016
[29] Weger, J. D.; Binks, D.; Molenaar, J.; Water, W. V.D., Generic behavior of grazing impact oscillators, Physical Review Letters, 76, 3951-3954 (1996)
[30] Yagasaki, K.; Uozumi, T., Controlling chaos in a pendulum subjected to feedforward and feedback control, International Journal of Bifurcation and Chaos, 7, 2827-2835 (1997) · Zbl 0925.93346
[31] Yagasaki, K., Dynamics of a pendulum subjected to feedforward and feedback control, JSME International Journal. Series C, Mechanical Systems, Machine Elements and Manufacturing, 41, 545-554 (1998)
[32] Braiman, Y.; Goldhirsch, I., Taming chaotic dynamics with weak periodic perturbation, Physical Review Letters, 66, 2545-2548 (1991) · Zbl 0968.37508
[33] Baker, G. L., Control of the chaotic driven pendulum, American Journal of Physics, 63, 832-838 (1995)
[34] Yang, J. P.; Jing, Z. J., Inhibition of chaos of in pendulum equation, Chaos, Solitons and Fractals, 35, 726-737 (2008) · Zbl 1142.37373
[35] Yang, J. P.; Jing, Z. J., Controlling chaos in a pendulum equation with ultra-subharmonic resonances, Chaos, Solitons and Fractals, 42, 1214-1226 (2009) · Zbl 1198.93022
[36] Du, Z. D., Type I periodic motions for nonlinear impact oscillators, Nonlinear Analysis, 67, 1344-1358 (2007) · Zbl 1144.34026
[37] Awrejcewicz, J.; Holicke, M., Melnikov’s method and stick-slip chaotic oscillations in very weakly forced mechanical systems, International Journal of Bifurcation and Chaos, 9, 505-518 (1999) · Zbl 0947.70015
[38] Li, Y. R., Asymmetric type II periodic motions for nonlinear impact oscillators, Nonlinear Analysis, 68, 2681-2696 (2008) · Zbl 1158.34031
[39] Yagasaki, K., Chaos in a pendulum with feedback control, Nonlinear Dynamics, 6, 125-142 (1994)
[40] Holmes, P. J., A nonlinear oscillator with a strange attractor, Philosophical Transactions of the Royal Society of London. Series A, 299, 419-448 (1979) · Zbl 0423.34049
[41] Li, R. H.; Xu, W.; Li, S., Chaos controlling of extended nonlinear Lienard system based on the Melnikov theory, Applied Mathematics and Computation, 178, 405-414 (2006) · Zbl 1103.70013
[42] Yang, X. S.; Tang, Y., Horseshoes in piecewise continuous maps, Chaos, Solitons and Fractals, 19, 841-845 (2004) · Zbl 1053.37006
[43] Yang, X. S.; Li, Q. D., A computer-assisted proof of chaos in Josephson junctions, Chaos, Solitons and Fractals, 27, 25-30 (2006) · Zbl 1083.37034
[44] Yang, X. S.; Li, Q. D.; Chen, G. R., Twin-star hyperchaotic attractor and its circuit implementation, International Journal of Circuit Theory and Applications, 31, 637-640 (2003)
[45] Holmes, P. J., A nonlinear oscillator with a strange attractor, Philosophical Transactions of the Royal Society of London. Series A, 299, 419-448 (1979) · Zbl 0423.34049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.