zbMATH — the first resource for mathematics

Normalized system for the super Laplace operator. (English) Zbl 1256.81054
Summary: In this paper, a 0-normalized system for the super Laplace operator (i.e., a Laplace operator in a superspace) is established. According to this system, we obtain Almansi type decomposition of polyharmonic functions in the superspace. Besides, we set up the relationship between the Riquier problem and the Dirichlet problem in the superspace. In the end, the connection between harmonic functions and solutions to the Helmholtz equation in the superspace is investigated.

81Q60 Supersymmetry and quantum mechanics
46S60 Functional analysis on superspaces (supermanifolds) or graded spaces
Full Text: DOI
[1] F. Brack, R. Delanghe, F. Sommen, Clifford Analysis. Research Notes in Mathematics, 76, Pitman (Advanced Publishing Program), Boston, MA, 1982.
[2] Gilbert R. P., Buchanan J. L.: First order elliptic system, A function theoretic approach. Academic Press, New York (1983) · Zbl 0529.35006
[3] J. Ryan, Introductory Clifford Analysis. Lectures on Clifford (Geometric) Algebras and Applications, Birkhäuser, Boston, MA, p. xvii, 221, 2004.
[4] Wen G. C.: Clifford analysis and elliptic systerm, hyperbolic systerm of first order equation. World Scientific, Singapore (1991)
[5] Qiao Y. Y., Xie Y. H.: A nonlinear boundary value problem in Clifford analysis. Adv. Appl. Clifford Algebra 11, 260–276 (2001) · Zbl 1221.45002
[6] Huang S., Qiao Y. Y., Wen G.C.: Real and Complex Clifford Analysis. Springer, New York (2005) · Zbl 1096.30042
[7] F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables. Moskov. Gos. Univ. Moscow, 1983. · Zbl 0527.15020
[8] Leĭites D. A.: Introduction to the theory of supermanifolds. Usp. Mat. Nauk 35, 3–57 (1980)
[9] DeWitt B.: Supermanifolds Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984) · Zbl 0551.53002
[10] Rogers A.: A global theory of supermanifolds. J. Math. Phys. 21, 1352–1365 (1980) · Zbl 0447.58003
[11] Batchelor M.: Two approaches to supermanifolds. Trans. Amer. Math. Soc. 258(1), 257–270 (1980) · Zbl 0426.58003
[12] De Bie H., Sommen F.: Correct rules for Clifford calculus on superspace. Adv. Appl. Clifford Alg. 17, 357–382 (2007) · Zbl 1129.30034
[13] De Bie H., Sommen F.: Fundamental solutions for the super Laplace and Dirac operators and all their natural powers. J. Math. Anal. Appl. 338, 1320–1328 (2008) · Zbl 1143.30022
[14] H. De Bie and F. Sommen, Fischer decompositions in superspace. Function Spaces in Complex and Clifford Analysis, National University Publishers Hanoi (2008), 170–188. · Zbl 1168.58004
[15] K. Coulembier, H. De Bie, and F. Sommen, Integration in superspace using distribution theory. J. Phys. A: Math. Theor. 42 (2009), 395206 (23pp). · Zbl 1187.58011
[16] B. A. Bondarenko, Operatornye Algoritmy v Differenzial Uravneni’nyah. Fan, Tashkent, 1984 (in Russian).
[17] V. V. Karachik, Polynomial solutions to the systems of partial differential equations with constant coefficients. Yokohama Math. J. 47 (2000), 121–142. · Zbl 0971.35014
[18] Karachik V. V. Normalized system of functions with respect to the Laplace operator and its applications. J. Math. Anal. Appl. 287 (2003), 577–592. · Zbl 1039.31009
[19] Karachik V. V.: On an Expansion of Almansi Type. Mat. Zametki 83(3), 370–380 (2008) · Zbl 1152.35351
[20] L. Liu and G. B. Ren, Normalized System for Wave and Dunkl Operators. Taiwanese J. Math, Vol. 14, No. 2 (2010), 675–683. · Zbl 1218.35060
[21] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic Functions. Oxford Mathematics Monographs (The Clarendon Press, Oxford University Press, New York, 1983). · Zbl 0514.31001
[22] Almansi E.: Sull’integrazione dell’equazione differenziale {\(\Delta\)}2m u = 0. Ann. Mat. Pura. Appl. (ser 3) 2, 1–51 (1898) · JFM 30.0331.03
[23] Malonek Helmuth R., Ren G. B.: Almansi-type theorems in Clifford analysis. Math. Meth. Appl. Sci. 25, 1541–1552 (2002) · Zbl 1058.30050
[24] Yude Bu, Du J. Y.: The RH boundary value problem of the k-monogenic functions. J. Math. Anal. Appl. 347, 633–644 (2008) · Zbl 1203.30052
[25] H. F. Yuan, Y. Y. Qiao and H. J. Yang, Decomposition of k-monogenic functions in superspace. Complex Variables and Elliptic Equations, Available online: 21 Nov 2011, 1-16.
[26] M. Nicolescu, Sur le probléme de Riquier. Comptes Rendus, Vol. CXCIV, 1932.
[27] Nicolescu M.: Les fonctions polyharmoniques. Hermann, Paris (1936) · JFM 62.0564.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.