×

The “phase function” method to solve second-order asymptotically polynomial differential equations. (English) Zbl 1256.65080

This paper uses Liouville-Green asymptotic theory to compute the zeros of the solutions, via an asymptotic numerical approximation to a phase function, and the solutions themselves of the problem \(y''+ q(x)y= 0\). Here, \(q(x)\) is asymptotically polynomial. Examples of this approach are given for various simple polynomial and rational forms of \(q(x)\).

MSC:

65L99 Numerical methods for ordinary differential equations
34A05 Explicit solutions, first integrals of ordinary differential equations

Software:

Mathematica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1968) · Zbl 0171.38503
[2] Bornemann F.: Accuracy and stability of computing high-order derivatives of analytic functions by Cauchy integrals. Found. Comput. Math. 11, 1–63 (2011) · Zbl 1213.65039
[3] Boruvka, O.: ”Théorie des transformations des équations différentielles linéaires du deuxième ordre”. Rend. Mat. 26(ser. V), 187–246 (1967) · Zbl 0165.10002
[4] Boruvka O.: Linear Differential Transformations of the Second Order. English University Press, London (1971) · Zbl 0222.34002
[5] Bucci, B.: Asymptotic-Numerical Approximation of Rapidly Oscillatory Solutions of Second-Order Differential Equations and of Their Zeros (Italian). ”Laurea Magistrale” Thesis, University ”Roma Tre” (Advisor: R. Spigler) (2010)
[6] Condon M., Deaño A., Iserles A.: On highly oscillatory problems arising in electronic engineering. Math. Model. Numer. Anal. 43(4), 785–804 (2009) · Zbl 1172.78009
[7] Condon M., Deaño A., Iserles A., Maczyński K., Xu T.: On numerical methods for highly oscillatory problems in circuit simulation. COMPEL 28(6), 1607–1618 (2009) · Zbl 1183.78018
[8] Condon M., Deaño A., Iserles A.: On second-order differential equations with highly oscillatory forcing terms. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466(2118), 1809–1828 (2010) · Zbl 1194.34019
[9] Dormand J.R., El-Mikkawy M.E.A., Prince P.J.: Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987) · Zbl 0624.65059
[10] Dormand J.R., El-Mikkawy M.E.A., Prince P.J.: High-order embedded Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 423–430 (1987) · Zbl 0627.65085
[11] Fornberg B.: Numerical differentiation of analytic functions. ACM Trans. Math. Softw. 7, 512–527 (1981) · Zbl 0465.65012
[12] Glaser A., Liu X., Rokhlin V.: A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput. 29, 1420–1438 (2007) · Zbl 1145.65015
[13] Hartman P.: Ordinary Differential Equations. Wiley, New York (1964) · Zbl 0125.32102
[14] Hochbruck M., Lubich C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999) · Zbl 0937.65077
[15] Horn M.K.: Fourth- and fifth order, scaled Runge-Kutta algorithms for treating dense output. SIAM J. Numer. Anal. 20(3), 558–568 (1983) · Zbl 0511.65048
[16] Iserles A.: On the global error of discretization methods for highly-oscillatory ordinary differential equations. BIT 42(3), 561–599 (2002) · Zbl 1027.65107
[17] Iserles A.: Think globally, act locally: solving highly oscillatory ordinary differential equations. Appl. Numer. Math. 43, 145–160 (2002) · Zbl 1016.65050
[18] Iserles, A.: On the numerical analysis of rapid oscillation. Group Theory and Numerical Analysis, pp. 149–163. CRM Proc. Lecture Notes, vol. 39. Amer. Math. Soc., Providence (2005) · Zbl 1080.65058
[19] Lang S.: Analysis II. Addison-Wesley, Reading (1969) · Zbl 0176.00504
[20] Lyness J.N.: Differentiation formulas for analytic functions. Math. Comput. 22, 352–362 (1968) · Zbl 0159.45002
[21] Neuman F.: Global Properties of Linear Ordinary Differential Equations. Kluwer, Dordrecht (1991) · Zbl 0784.34009
[22] Olver F.W.J.: A new method for the evaluation of zeros of Bessel functions and of other solutions of second-order differential equations. Proc. Cambridge Philos. Soc. 46, 570–580 (1950) · Zbl 0038.08007
[23] Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974); reprinted by A K Peters, Wellesley (1997) · Zbl 0303.41035
[24] Petzold L., Jay L.O., Yen J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numer. 6, 437–483 (1997) · Zbl 0887.65072
[25] Pistellato, F.: Analisi Asintotico-Numerica di Equazioni Differenziali Lineari del Secondo Ordine a Coefficienti Polinomiali (Italian). ”Laurea” Thesis, University of Padova (Advisor: M. Vianello) (1996)
[26] Rudin W.: Function Theory in Polydiscs. W. A. Benjamin Inc., New York-Amsterdam (1969) · Zbl 0177.34101
[27] Simos T.E.: P-stable exponentially fitted methods for the numerical integration of the Schrödinger equation. J. Comput. Phys. 148, 305–321 (1999) · Zbl 0924.65073
[28] Spigler R., Vianello M.: Approximating zeros of solutions of second-order linear ODEs by ’phase function’ methods. In: Wong, R. (eds) ’Asymptotic and Computational Analysis’: Conference in Honor of Frank W.J. Olver 65th Birthday Lecture Notes in Pure and Applied Mathematics vol. 124, pp. 707–722. Marcel Dekker, New York (1990)
[29] Spigler R., Vianello M.: A numerical method for evaluating zeros of solutions of second-order linear differential equations. Math. Comput. 55, 591–612 (1990) · Zbl 0676.65041
[30] Spigler R., Vianello M.: Global existence and uniqueness for the Kummer transformation problem subject to non-Cauchy data. Differ. Integr. Equ. 4, 991–1003 (1991) · Zbl 0743.34043
[31] Spigler R., Vianello M.: Improved estimates for the derivatives of the O-symbols in view of numerical applications. J. Math. Anal. Appl. 164, 480–488 (1992) · Zbl 0770.41025
[32] Spigler R., Vianello M.: A variant of the complex Liouville-Green approximation theorem. Arch. Math. (Brno) 36(3), 213–218 (2000) · Zbl 1058.34128
[33] Vergine, M.: Approssimazione Numerica di Soluzioni di Equazioni Differenziali Ordinarie a Coefficienti Polinomiali o Esponenziali col Metodo della ”Funzione di Fase” (Italian). ”Laurea” Thesis, University of Lecce (Advisor: R. Spigler) (1996)
[34] Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer, 2nd edn. Addison-Wesley, Reading (1991). http://www.wolfram.com/products/mathematica/index.html · Zbl 0671.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.