×

Realizable Hamiltonians for universal adiabatic quantum computers. (English) Zbl 1255.81101

Summary: It has been established that local lattice spin Hamiltonians can be used for universal adiabatic quantum computation. However, the two-local model Hamiltonians used in these proofs are general and hence do not limit the types of interactions required between spins. To address this concern, the present paper provides two simple model Hamiltonians that are of practical interest to experimentalists working toward the realization of a universal adiabatic quantum computer. The model Hamiltonians presented are the simplest known quantum-Merlin-Arthur-complete (QMA-complete) two-local Hamiltonians. The two-local Ising model with one-local transverse field, which has been realized using an array of technologies, is perhaps the simplest quantum spin model but is unlikely to be universal for adiabatic quantum computation. We demonstrate that this model can be rendered universal and QMA-complete by adding a tunable two-local transverse \(\sigma^x\sigma^x\) coupling. We also show the universality and QMA-completeness of spin models with only one-local \(\sigma^z\) and \(\sigma^x\) fields and two-local \(\sigma^z\sigma^x\) interactions.

MSC:

81P68 Quantum computation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1088/0305-4470/15/10/028 · doi:10.1088/0305-4470/15/10/028
[2] DOI: 10.1126/science.220.4598.671 · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[3] DOI: 10.1126/science.284.5415.779 · doi:10.1126/science.284.5415.779
[4] DOI: 10.1126/science.1057726 · Zbl 1226.81046 · doi:10.1126/science.1057726
[5] DOI: 10.1103/PhysRevLett.98.177001 · doi:10.1103/PhysRevLett.98.177001
[6] A. Kitaev, in: Classical and Quantum Computation, Graduate Studies in Mathematics (2002) · Zbl 1022.68001 · doi:10.1090/gsm/047
[7] R. Feynman, Optics News 11 pp 11– (1982) ISSN: http://id.crossref.org/issn/0098-907X · doi:10.1364/ON.11.2.000011
[8] DOI: 10.1137/S0097539705447323 · Zbl 1134.81009 · doi:10.1137/S0097539705447323
[9] DOI: 10.1103/PhysRevA.71.062314 · doi:10.1103/PhysRevA.71.062314
[10] DOI: 10.1103/PhysRevLett.99.070502 · doi:10.1103/PhysRevLett.99.070502
[11] DOI: 10.1137/S0097539704445226 · Zbl 1102.81032 · doi:10.1137/S0097539704445226
[12] DOI: 10.1137/S0097539796300921 · Zbl 0895.68042 · doi:10.1137/S0097539796300921
[13] DOI: 10.1103/PhysRevLett.91.057003 · doi:10.1103/PhysRevLett.91.057003
[14] DOI: 10.1038/nphys287 · doi:10.1038/nphys287
[15] DOI: 10.1103/PhysRevB.60.15398 · doi:10.1103/PhysRevB.60.15398
[16] DOI: 10.1103/PhysRevLett.74.4083 · doi:10.1103/PhysRevLett.74.4083
[17] DOI: 10.1103/PhysRevA.75.012307 · doi:10.1103/PhysRevA.75.012307
[18] DOI: 10.1103/PhysRevA.74.040302 · doi:10.1103/PhysRevA.74.040302
[19] DOI: 10.1103/PhysRevE.75.051112 · doi:10.1103/PhysRevE.75.051112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.