×

zbMATH — the first resource for mathematics

Strong violations of Bell-type inequalities for path-entangled number states. (English) Zbl 1255.81039
Summary: We show that nonlocal correlation experiments on the two spatially separated modes of a maximally path-entangled number state may be performed. They lead to a violation of a Clauser-Horne Bell inequality for any finite photon number \(N\). We also present an analytical expression for the two-mode Wigner function of a maximally path-entangled number state and investigate a Clauser-Horne-Shimony-Holt Bell inequality for such a state. We test other Bell-type inequalities. Some are violated by a constant amount for any \(N\).

MSC:
81P15 Quantum measurement theory, state operations, state preparations
81-05 Experimental work for problems pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevA.40.2417 · doi:10.1103/PhysRevA.40.2417
[2] DOI: 10.1103/PhysRevLett.85.2733 · doi:10.1103/PhysRevLett.85.2733
[3] DOI: 10.1080/0950034021000011536 · doi:10.1080/0950034021000011536
[4] A. Migdall, Phys. Today 52 pp 95– (1999) ISSN: http://id.crossref.org/issn/0031-9228
[5] K. T. Kapale, in: Concepts of Physics (2005)
[6] DOI: 10.1016/j.physrep.2005.03.003 · doi:10.1016/j.physrep.2005.03.003
[7] DOI: 10.1103/PhysRevA.40.4277 · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[8] DOI: 10.1103/PhysRevA.34.1260 · doi:10.1103/PhysRevA.34.1260
[9] DOI: 10.1103/PhysRevLett.66.252 · doi:10.1103/PhysRevLett.66.252
[10] DOI: 10.1103/PhysRevLett.73.2279 · doi:10.1103/PhysRevLett.73.2279
[11] DOI: 10.1103/PhysRevLett.75.2064 · doi:10.1103/PhysRevLett.75.2064
[12] DOI: 10.1103/PhysRevLett.75.2065 · doi:10.1103/PhysRevLett.75.2065
[13] DOI: 10.1103/PhysRevA.72.064306 · doi:10.1103/PhysRevA.72.064306
[14] DOI: 10.1016/0375-9601(92)90949-M · doi:10.1016/0375-9601(92)90949-M
[15] DOI: 10.1016/0375-9601(92)90711-T · doi:10.1016/0375-9601(92)90711-T
[16] DOI: 10.1103/PhysRevLett.92.193601 · doi:10.1103/PhysRevLett.92.193601
[17] DOI: 10.1103/PhysRevLett.92.180401 · doi:10.1103/PhysRevLett.92.180401
[18] DOI: 10.1103/PhysRevA.74.052114 · doi:10.1103/PhysRevA.74.052114
[19] DOI: 10.1103/PhysRevLett.82.2009 · Zbl 1031.81508 · doi:10.1103/PhysRevLett.82.2009
[20] DOI: 10.1103/PhysRevA.73.022311 · doi:10.1103/PhysRevA.73.022311
[21] DOI: 10.1103/PhysRevA.72.064306 · doi:10.1103/PhysRevA.72.064306
[22] DOI: 10.1103/PhysRevA.74.026302 · doi:10.1103/PhysRevA.74.026302
[23] DOI: 10.1103/PhysRevLett.70.548 · doi:10.1103/PhysRevLett.70.548
[24] DOI: 10.1103/PhysRevLett.76.4344 · doi:10.1103/PhysRevLett.76.4344
[25] DOI: 10.1103/PhysRevA.53.4528 · doi:10.1103/PhysRevA.53.4528
[26] DOI: 10.1103/PhysRevD.10.526 · doi:10.1103/PhysRevD.10.526
[27] DOI: 10.1103/PhysRevA.15.449 · doi:10.1103/PhysRevA.15.449
[28] DOI: 10.1103/PhysRevA.48.2479 · doi:10.1103/PhysRevA.48.2479
[29] M. Abramowitz, in: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972) · Zbl 0543.33001 · doi:10.1119/1.15378
[30] DOI: 10.1103/PhysRevLett.23.880 · Zbl 1371.81014 · doi:10.1103/PhysRevLett.23.880
[31] I. Pitowsky, in: Quantum Probability–Quantum Logic (1989)
[32] S. Janssens, Fuzzy Sets Syst. 148 pp 263– (2004) ISSN: http://id.crossref.org/issn/0165-0114 · Zbl 1057.81011 · doi:10.1016/j.fss.2004.03.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.