zbMATH — the first resource for mathematics

Dependence of decaying homogeneous isotropic turbulence on inflow conditions. (English) Zbl 1255.76032
Summary: A careful data analysis of far downstream turbulent flows generated by conventional and multiscale grids shows that these decaying flows are very clearly different from both Saffman and Loitsyansky turbulence. The analysis also shows that there are marked differences between the far downstream turbulence behaviours generated by different types of grid. There is an inflow condition dependence on both the normalised energy dissipation and the conserved large-scale invariant.

76F05 Isotropic turbulence; homogeneous turbulence
Full Text: DOI
[1] Batchelor, G.; Townsend, A., Proceedings of the royal society of London, series A, mathematical and physical sciences, 193, 1035, 539, (1948)
[2] Batchelor, G.K., The theory of homogeneous turbulence, (1953), Cambridge University Press Cambridge · Zbl 0053.14404
[3] Burattini, P.; Lavoie, P.; Antonia, R., Physics of fluids, 17, 098103, (2005)
[4] Comte-Bellot, G.; Corrsin, S., J. fluid mech., 48, 02, 273, (1971)
[5] Gad-El-Hak, M.; Corrsin, S., J. fluid mech., 62, 01, 115, (1974)
[6] Geipel, P.; Henry Goh, K.H.; Lindstedt, R.P., Flow turbulence combust., 85, 3-4, 397, (2010) · Zbl 1410.76089
[7] George, W.K., Physics of fluids A, 4, 7, 1492, (1992)
[8] Hurst, D.J.; Vassilicos, J.C., Physics of fluids, 19, 035103, (2007) · Zbl 1146.76420
[9] Kinzel, M.; Wolf, M.; Holzner, M.; Lüthi, B.; Tropea, C.; Kinzelbach, W., Exp. fluids, 51, 75, (2011)
[10] Krogstad, P.Å.; Davidson, P.A., J. fluid mech., 642, 373, (2010)
[11] Krogstad, P.Å.; Davidson, P.A., J. fluid mech., 680, 417, (2011)
[12] Lavoie, P.; Djenidi, L.; Antonia, R., J. fluid mech., 585, 395, (2007)
[13] Rotta, J.C., Turbulente strömungen: eine einführung in die theorie und ihre anwendung, (1972), B.G. Teubner Stuttgart · Zbl 0226.76019
[14] Valente, P.C.; Vassilicos, J.C., J. fluid mech., 687, 300, (2011)
[15] Vassilicos, J.C., Physics letters A, 375, 6, 1010, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.