×

zbMATH — the first resource for mathematics

Almost sure central limit theorems of the partial sums and maxima from complete and incomplete samples of stationary sequences. (English) Zbl 1254.60032
MSC:
60F15 Strong limit theorems
60F05 Central limit and other weak theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/S0304-4149(01)00078-3 · Zbl 1053.60022 · doi:10.1016/S0304-4149(01)00078-3
[2] DOI: 10.1214/aoms/1177703551 · Zbl 0122.13503 · doi:10.1214/aoms/1177703551
[3] Brosamler G., Math. Proc. Cambridge Philos. Soc. 104 pp 564–
[4] DOI: 10.1002/mana.19981900104 · doi:10.1002/mana.19981900104
[5] DOI: 10.1016/S0167-7152(02)00128-1 · Zbl 1014.60031 · doi:10.1016/S0167-7152(02)00128-1
[6] Dudziński M., Probab. Math. Statist. 23 pp 139–
[7] DOI: 10.1016/j.spl.2007.07.007 · Zbl 1139.60015 · doi:10.1016/j.spl.2007.07.007
[8] DOI: 10.1016/S0167-7152(00)00036-5 · Zbl 0964.60031 · doi:10.1016/S0167-7152(00)00036-5
[9] DOI: 10.1016/S0167-7152(97)00121-1 · Zbl 1246.60034 · doi:10.1016/S0167-7152(97)00121-1
[10] DOI: 10.2307/3215271 · Zbl 0855.60052 · doi:10.2307/3215271
[11] Ho H. C., J. Appl. Probab. 36 pp 1031– · doi:10.1017/S0021900200017848
[12] DOI: 10.1214/aop/1176988296 · Zbl 0831.60034 · doi:10.1214/aop/1176988296
[13] DOI: 10.1007/s00184-008-0192-5 · Zbl 1433.60025 · doi:10.1007/s00184-008-0192-5
[14] DOI: 10.1007/s004400100176 · Zbl 1004.60031 · doi:10.1007/s004400100176
[15] McCormick W. P., J. Appl. Probab. 37 pp 958– · doi:10.1017/S0021900200018155
[16] DOI: 10.1016/j.spa.2006.05.009 · Zbl 1118.60047 · doi:10.1016/j.spa.2006.05.009
[17] Peng L., Probab. Math. Statist. 2 pp 217–
[18] Peng Z., Th. Probab. Appl. 47 pp 817–
[19] DOI: 10.1007/978-0-387-75953-1 · doi:10.1007/978-0-387-75953-1
[20] DOI: 10.1002/mana.19881370117 · Zbl 0661.60031 · doi:10.1002/mana.19881370117
[21] DOI: 10.1016/S0167-7152(02)00156-6 · Zbl 1033.60042 · doi:10.1016/S0167-7152(02)00156-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.