Fels, Gregor; Kaup, Wilhelm Nilpotent algebras and affinely homogeneous surfaces. (English) Zbl 1254.14053 Math. Ann. 353, No. 4, 1315-1350 (2012). To a nilpotent commutative algebra \(N\) of finite dimension over a field of zero characteristic one associates a smooth algebraic subvariety \(S \subset N\), whose degree is the nil-index and whose codimension is the dimension of the annihilator \(A\) of \(N\). The case when \(N\) is graded and \(A\) is 1-dimensional is studied in detail, in particular the question to what extent the hypersurface \(S\) determines the algebra \(N\). A key example with nil-index 5 is given. Reviewer: Alexandru Dimca (Nice) Cited in 9 Documents MSC: 14J70 Hypersurfaces and algebraic geometry 32V40 Real submanifolds in complex manifolds Keywords:nilpotent commutative algebra; smooth subvariety; annihilator PDF BibTeX XML Cite \textit{G. Fels} and \textit{W. Kaup}, Math. Ann. 353, No. 4, 1315--1350 (2012; Zbl 1254.14053) Full Text: DOI arXiv References: [1] Cortiñas G., Krongold F.: Artinian algebras and differential forms. Commun. Algebra 27, 1711–1716 (1999) · Zbl 0931.13019 · doi:10.1080/00927879908826523 [2] Eastwood M.G.: Moduli of isolated hypersurface singularities. Asian J. Math. 8, 305–314 (2004) · Zbl 1084.32019 · doi:10.4310/AJM.2004.v8.n2.a6 [3] Elias, J., Rossi, M.E.: Isomorphism classes of short Gorenstein local rings via Macaulay’s inverse system. TAMS (2011, in press) · Zbl 1281.13015 [4] Fels G., Kaup W.: Local tube realizations of CR-manifolds and maximal abelian subalgebras. Ann. Sc. Norm. Sup. Pisa. Cl. Sci X, 99–128 (2011) · Zbl 1229.32020 [5] Fels, G., Kaup W.: Classification of commutative algebras and tube realizations of hyperquadrics. arXiv:0906.5549v2. (2011, to submit) · Zbl 1229.32020 [6] Fels G., Isaev A., Kaup W., Kruzhilin N.: Singularities and polynomial realizations of affine quadrics. J. Geom. Anal. 21, 767–782 (2011) · Zbl 1274.32018 · doi:10.1007/s12220-011-9223-y [7] Isaev A.V.: On the number of affine equivalence classes of spherical tube hypersurfaces. Math. Ann. 349, 59–72 (2011) · Zbl 1207.32033 · doi:10.1007/s00208-010-0514-6 [8] Isaev, A.V.: On the affine homogeneity of algebraic hypersurfaces arising from Gorenstein algebras. Asian J. Math. http://arxiv.org/pdf/1101.0452v1 , see also page 3, line 11; http://arxiv.org/pdf/1101.0452v2 (2011, to appear) [9] Mukai S.: An Introduction to Invariants and Moduli. Cambridge University Press, Cambridge (2003) · Zbl 1033.14008 [10] Perepechko, A.: On solvability of the automorphism group of a finite-dimensional algebra. arXiv:1012:0237 (2011, submitted) · Zbl 1301.13024 [11] Saito K.: Quasihomogene isolierte Singularitäten von Hyperflächen. Invent. Math. 14, 123–142 (1971) · Zbl 0224.32011 · doi:10.1007/BF01405360 [12] Xu Y.J., Yau S.S.T.: Micro-local characterization of quasi-homogeneous singularities. Am. J. Math. 118, 389–399 (1996) · Zbl 0927.32022 · doi:10.1353/ajm.1996.0020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.