×

zbMATH — the first resource for mathematics

Reduced order computational continua. (English) Zbl 1253.74085
Summary: We present a new multiscale approach, hereafter referred to as reduced order computational continua \((RC^{2})\), that possesses computational efficiency of phenomenological models for heterogeneous media with accuracy inherent to generalized and nonlocal continua models. The \(RC^{2}\) approach introduces no scale separation, makes no assumption about infinitesimality of the fine-scale structure, does not require higher order continuity, introduces no new degrees-of-freedom, is free of higher order boundary conditions and exploits a pre-computed material database to effectively solve a unit cell (representative volume) problem. It features three building blocks: (i) the nonlocal quadrature scheme, (ii) the coarse-scale stress function and (iii) the residual-free fields. The nonlocal quadrature scheme permits nonlocal interactions to extend over finite neighborhoods and thus introduces nonlocality into the two-scale integrals employed in the multiple-scale asymptotic expansion methods, or alternatively, into the Hill-Mandel macrohomogeneity condition. The coarse-scale stress function, which replaces the classical notion of coarse-scale stress being the average of fine-scale stresses, is constructed to express the governing equations in terms of coarse-scale fields only. Finally, the residual-free fields are constructed to avoid costly discrete equilibrium solution of the unit cell problems, which is known to be the bottleneck of multiscale computations.

MSC:
74Q05 Homogenization in equilibrium problems of solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eshelby, J.D., The determination of the field of an ellipsoidal inclusion and related problems, Proc. R. soc. lond. A, 241, 376-396, (1957) · Zbl 0079.39606
[2] Hashin, Z., The elastic moduli of heterogeneous materials, J. appl. mech., 29, 143-150, (1962) · Zbl 0102.17401
[3] Mori, T.; Tanaka, K., Average stress in the matrix and average elastic energy of materials with misfitting inclusions, Acta metall., 21, 571-574, (1973)
[4] Hill, R., A self-consistent mechanics of composite materials, J. mech. phys. solids, 13, 357-372, (1965)
[5] Christensen, R.M.; Lo, K.H., Solution for effective shear properties in three phase sphere and cylinder models, J. mech. phys. solids, 27, 315-330, (1979) · Zbl 0419.73007
[6] Suquet, P., Elements of homogenization for inelastic solid mechanics, (), 193-278
[7] Guedes, J.M.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. methods appl. mech. eng., 83, 143-198, (1990) · Zbl 0737.73008
[8] Terada, K.; Kikuchi, N., Nonlinear homogenization method for practical applications, (), 1-16
[9] Fish, J.; Shek, K.; Pandheeradi, M.; Shephard, M.S., Computational plasticity for composite structures based on mathematical homogenization: theory and practice, Comput. methods appl. mech. engrg., 148, 53-73, (1997) · Zbl 0924.73145
[10] Fish, J.; Shek, K.L., Finite deformation plasticity of composite structures: computational models and adaptive strategies, Comput. methods appl. mech. engrg., 172, 145-174, (1999) · Zbl 0956.74009
[11] Fish, J.; Yu, Q., Multiscale damage modeling for composite materials: theory and computational framework, Int. J. numer. methods eng., 52, 1-2, 161-192, (2001)
[12] Terada, K.; Kikuchi, N., A class of general algorithms for multi-scale analysis of heterogeneous media, Comput. methods appl. mech. engrg., 190, 5427-5464, (2001) · Zbl 1001.74095
[13] Matsui, K.; Terada, K.; Yuge, K., Two-scale finite element analysis of heterogeneous solids with periodic microstructures, Comput. struct., 82, 7-8, 593-606, (2004)
[14] Smit, R.J.M.; Brekelmans, W.A.M.; Meijer, H.E.H., Prediction of the mechanical behavior of nonlinear heterogeneous systems by multilevel finite element modeling, Comput. methods appl. mech. engrg., 155, 81-192, (1998) · Zbl 0967.74069
[15] Miehe, C.; Koch, A., Computational micro-to-macro transition of discretized microstructures undergoing small strain, Arch. appl. mech., 72, 300-317, (2002) · Zbl 1032.74010
[16] Kouznetsova, V.; Brekelmans, W.-A.; Baaijens, F.P.-T., An approach to micro-macro modeling of heterogeneous materials, Comput. mech., 27, 37-48, (2001) · Zbl 1005.74018
[17] Feyel, F.; Chaboche, J.-L., FE2 multiscale approach for modeling the elastoviscoplastic behavior of long fiber sic/ti composite materials, Comput. methods appl. mech. engrg., 183, 309-330, (2000) · Zbl 0993.74062
[18] Ghosh, S.; Lee, K.; Moorthy, S., Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method, Int. J. solids struct., 32, 27-62, (1995) · Zbl 0865.73060
[19] Ghosh, S.; Lee, K.; Moorthy, S., Two scale analysis of heterogeneous elasticplastic materials with asymptotic homogenization and Voronoi cell finite element model, Comput. methods appl. mech. engrg., 132, 63-116, (1996) · Zbl 0892.73061
[20] Michel, J.-C.; Moulinec, H.; Suquet, P., Effective properties of composite materials with periodic microstructure: a computational approach, Comput. methods appl. mech. engrg., 172, 109-143, (1999) · Zbl 0964.74054
[21] Geers, M.G.D.; Kouznetsova, V.; Brekelmans, W.A.M., Gradient-enhanced computational homogenization for the micro – macro scale transition, J. phys. IV, 11, 145-152, (2001)
[22] McVeigh, C.; Vernerey, F.; Liu, W.K.; Brinson, L.C., Multiresolution analysis for material design, Comput. methods appl. mech. engrg., 195, 5053-5076, (2006) · Zbl 1118.74040
[23] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. mech. phys. solids, 11, 357-372, (1963) · Zbl 0114.15804
[24] Babuska, I., Homogenization and application. mathematical and computational problems, () · Zbl 0346.65064
[25] Benssousan, A.; Lions, J.L.; Papanicoulau, G., Asymptotic analysis for periodic structures, (1978), North-Holland
[26] Sanchez-Palencia, E., Non-homogeneous media and vibration theory, () · Zbl 0432.70002
[27] Aero, E.L.; Kuvshinskii, E.V., Fundamental equations of the theory of elastic materials with rotationally interacting particles, Fiz. tverd. tela (S.-peterburg), 2, 1399-1409, (1960)
[28] Grioli, G., Elasticita‘ asimmetrica, Ann. mat. pura appl., 50, 389-417, (1960) · Zbl 0123.40504
[29] Truesdell, C.; Toupin, R.A., Classical field theories of mechanics, () · Zbl 0134.44403
[30] Mindlin, R., Micro-structure in linear elasticity, Arch. ration. mech. anal., 16, 51-78, (1964) · Zbl 0119.40302
[31] Germain, P., The method of virtual power in continuum mechanics. part 2: microstructure, SIAM J. appl. math., 25, 556-575, (1973) · Zbl 0273.73061
[32] Maugin, G., Nonlocal theories or gradient-type theories: a matter of convenience?, Arch. mech., 31, 15-26, (1979) · Zbl 0424.73006
[33] Aifantis, E., The physics of plastic deformation, Int. J. plasticity, 3, 211-248, (1987) · Zbl 0616.73106
[34] Cosserat, E.; Cosserat, F., Sur la mecanique generale, C.R. acad. sci. Paris, 145, 1139, (1907) · JFM 38.0693.01
[35] Eringen, A.; Suhubi, E., Nonlinear theory of simple microelastic solids, Int. J. eng. sci., 2, 189-203, (1964), pp. 189-203, 389-404 · Zbl 0138.21202
[36] Vernerey, F.J.; Liu, W.K.; Moran, B., Multi-scale micromorphic theory for hierarchical materials, J. mech. phys. solids, 55, 12, 2603-2651, (2007) · Zbl 1159.74314
[37] Green, A.E.; Naghdi, P.M., A unified procedure for construction of theories of deformable media. II: generalized continua, Proc. roy. soc. London A: math. phys. sci., 448, 357-377, (1995) · Zbl 0868.73013
[38] A. Eringen, Microcontinuum Field Theories: vol. I Foundations and Solids; vol. II Fluent Media (2001), Springer, New York, 1999. · Zbl 0953.74002
[39] Eringen, A.C., Theory of non-local elasticity and some applications, Res. mech., 21, 313-342, (1987)
[40] Eringen, A.C.; Edelen, D.G.B., On non-local elasticity, Int. J. eng. sci., 10, 233-248, (1972) · Zbl 0247.73005
[41] Kroner, E., Elasticity theory of materials with long range cohesive forces, Int. J. solids struct., 3, 731-742, (1967) · Zbl 0163.19402
[42] Belytschko, T.; Bazant, Z.P.; Hyun, Y-W.; Chang, T.-P., Strain softening materials and finite element solutions, Comput. struct., 23, 2, 163-180, (1986)
[43] Bazant, Z.P.; Pijaudier-Cabot, G., Nonlocal continuum damage, localization instability and convergence, J. appl. mech., 55, 287-293, (1988) · Zbl 0663.73075
[44] Fleck, N.A.; Hutchinson, J.W., A reformulation of strain gradient plasticity, J. mech. phys. solids, 49, 2245-2271, (2001) · Zbl 1033.74006
[45] Huang, Y.; Gao, H.; Nix, W.D.; Hutchinson, J.W., Mechanism-based strain gradient plasticity. II. analysis, J. mech. phys. solids, 48, 99-128, (2000) · Zbl 0990.74016
[46] Geers, M.G.D.; Kouznetsova, V.; Brekelmans, W.A.M., Gradient-enhanced computational homogenization for the micro – macro scale transition, J. phys. IV, 11, 145-152, (2001)
[47] Kouznetsova, V.; Geers, M.G.D.; Brekelmans, W.A.M., Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Int. J. numer. methods engrg., 54, 1235-1260, (2002) · Zbl 1058.74070
[48] Geers, M.G.D.; Peerlings, R.H.J.; Brekelmans, W.A.M.; de Borst, R., Phenomenological nonlocal approaches based on implicit gradient-enhanced damage, Acta mech., 144, 1-2, 1-15, (2000) · Zbl 0993.74006
[49] Forest, S.; Sievert, R., Nonlinear microstrain theories, Int. J. solid struct., 43, 7224-7245, (2006) · Zbl 1102.74003
[50] Bazant, Z.P.; Jirasek, M., Nonlocal integral formulations of plasticity and damage: survey of progress, J. eng. mech., 128, 11, 1119-1149, (2002)
[51] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. methods appl. mech. engrg., 194, 4135-4195, (2005), Available from: <http://home.zcu.cz/∼danek/DATA/diplomka/hughes.pdf> · Zbl 1151.74419
[52] G. Cusatis, A. Mencarelli, D. Pelessone, J.T. Baylot, in: Proc. of the 2008 ASCE Structures Congress, 2008.
[53] G. Cusatis, D. Pelessone, A. Mencarelli, J.T. Baylot, in: Proceedings of IMECE 2007, 2007.
[54] Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K., Comput. methods appl. mech. engrg., 139, 195-227, (1996)
[55] Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y., Int. J. numer. methods engrg., 50, 435-466, (2001)
[56] Dvorak, G.J., Proc. R. soc. lond. A, 437, 311-327, (1992)
[57] Bahei-El-Din, Y.A.; Rajendran, A.M.; Zikry, M.A., Int. J. solid struct., 41, 2307-2330, (2004)
[58] Fish, J.; Kuznetsov, S., Computational continua, Int. J. numer. methods engrg., 84, 7, 774-802, (2010) · Zbl 1202.74199
[59] Armstrong, M.A., Basic topology, (1997), Springer-Verlag New York · Zbl 0711.55001
[60] Oskay, C.; Fish, J., Eigendeformation-based reduced order homogenization, Comput. methods appl. mech. engrg., 196, 1216-1243, (2007) · Zbl 1173.74380
[61] Yuan, Z.; Fish, J., Multiple scale eigendeformation-based reduced order homogenization, Comput. methods appl. mech. engrg., 198, 21-26, 2016-2038, (2009) · Zbl 1227.74051
[62] Yuan, Z.; Fish, J., Hierarchical model reduction at multiple scales, Int. J. numer. methods engrg., 79, 314-339, (2009) · Zbl 1171.74404
[63] Fish, J.; Yuan, Z., ()
[64] Hughes, T.J.R., The finite element method, (2000), Dover Publications, Inc. New York
[65] Wu, W.; Yuan, Z.; Fish, J.; Aitharaju, V., On the canonical structure of the eigendeformation-based reduced order homogenization, Int. J. multiscale com., 6, 615-629, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.