×

Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems. (English) Zbl 1253.74005

Summary: In the framework of stochastic non-intrusive finite element modeling, a common practice is using Monte Carlo simulation. The main drawback of this approach is the computational cost, because it requires computing a large number of deterministic finite element solutions. The different Monte Carlo samplings correspond to realizations of the random variables characterizing the stochastic behavior of the model. Thus, this requires solving a set deterministic problems with the same structure, that is with variations concerning the material parameters and the loading data. Consequently, the different problems to be solved are in practice similar to each other. The reduced basis strategy is therefore a sensible option to reduce computational cost, provided that the quality of the numerical solution is guaranteed. The paper introduces a goal-oriented strategy allowing to successively enrich the reduced basis along the Monte Carlo process. The method is based on assessing the error of the reduced basis solution with a residual estimate for the prescribed quantity of interest. The efficiency of the proposed approach, which is particularly important if the number of independent random variables is large, is illustrated in 1D and 2D mechanical examples.

MSC:

74A40 Random materials and composite materials
74S05 Finite element methods applied to problems in solid mechanics
65C05 Monte Carlo methods
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Almeida, R. C.; Oden, J. T., Solution verification, goal-oriented adaptive methods for stochastic advection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 199, 2472-2486 (2010) · Zbl 1231.76239
[2] Babuska, I.; Tempone, R.; Zouraris, G. E., Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation, Comput. Methods Appl. Mech. Engrg., 194, 1251-1294 (2005) · Zbl 1087.65004
[3] Babus˘ka, I., The Finite Element Method and Its Reliability (2001), Oxford University Press
[4] Boucard, P. A.; Buytet, S.; Guidault, P. A., A multiscale strategy for structural optimization, Int. J. Numer. Methods Engrg., 78, 101-126 (2009) · Zbl 1183.74209
[5] Boyaval, S.; Bris, C. L.; Lelièvre, T.; Maday, Y.; Nguyen, N. C.; Patera, A. T., Reduced basis techniques for stochastic problems, Arch. Comput. Methods Engrg., 17, 435-454 (2010) · Zbl 1269.65005
[6] Boyaval, S.; Bris, C. L.; Maday, Y.; Nguyen, N. C.; Patera, A. T., A reduced basis approach for variational problems with stochastic parameters: application to heat conduction with variable robin coefficient, Comput. Methods Appl. Mech. Engrg., 198, 3187-3206 (2009) · Zbl 1230.80013
[7] Butler, T.; Dawson, C.; Wildey, T., A posteriori error analysis of stochastic differential equation using polynomial chaos expansion, SIAM J. Sci. Comput., 33, 1267-1291 (2011) · Zbl 1230.65007
[8] Deb, M. K.; Babuska, I. M.; Oden, J. T., Solution of stochastic partial differential equations using galerkin finite element techniques, Comput. Methods Appl. Mech. Engrg., 190, 6359-6372 (2001) · Zbl 1075.65006
[9] Doostan, A.; Ghanem, R. G.; Red-Horse, J., Stochastic model reduction for chaos representations, Comput. Methods Appl. Mech. Engrg., 196, 3951-3966 (2007), Special Issue Honoring the 80th Birthday of Professor Ivo Babuska · Zbl 1173.74411
[10] Fishman, G., Monte Carlo: Concepts, Algorithms, and Applications (1995), Springer: Springer NY
[11] Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach (1991), Springer · Zbl 0722.73080
[12] Ghanem, R. G.; Kruger, R. M., Numerical solution of spectral stochastic finite element systems, Comput. Methods Appl. Mech. Engrg., 129, 289-303 (1996) · Zbl 0861.73071
[13] Giraud, L.; Langou, J., When modified Gram-Schmidt generates a well-conditioned set of vectors, IMA J. Numer. Anal., 22, 521-528 (2002) · Zbl 1027.65050
[14] Grigoriu, M., Reduced order models for random functions application to stochastic problems, Appl. Math. Model., 33, 161-175 (2009) · Zbl 1167.60329
[15] Huynh, D.; Knezevic, D.; Patera, A., Certified reduced basis model validation: a frequentistic uncertainty framework, Comput. Methods Appl. Mech. Engrg., 13-24 (2012) · Zbl 1239.93120
[16] Karhunen, K., Uber lineare methoden in der wahrscheinlichkeitsrechnung, Amer. Acad. Sci., 37, 3-79 (1947), Fennicade (Translation: RAND Corporation, Santa Monica, California, Report T-131, August 1960) · Zbl 0030.16502
[17] Keese, A.; Matthies, H. G., Hierarchical parallelisation for the solution of stochastic finite element equations, Comput. Struct., 83, 1033-1047 (2005), Uncertainties in structural mechanics and analysis-computational methods
[18] Khuri, A.; Cornell, J., Response Surfaces: Designs and Analyses (1987), Dekker: Dekker New York · Zbl 0632.62069
[19] Ladevèze, P.; Florentin, E., Verification of stochastic models in uncertain environments using the constitutive relation error method, Comput. Methods Appl. Mech. Engrg., 196, 225-234 (2006) · Zbl 1120.74820
[20] Ladevèze, P.; Pelle, J., Mastering Calculations in Linear and Nonlinear Mechanics (2004), Springer: Springer NY
[21] Loeve, M., Fonctions aleatoires du second ordre, Compte rendu de l’académie des Sciences - Paris, 220 (1945)
[22] Lubineau, G., A goal-oriented field measurement filtering technique for the identification of material model parameters, Comput. Mech., 44, 591-603 (2009) · Zbl 1171.74049
[23] Matthies, H. G.; Keese, A., Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 194, 1295-1331 (2005), Special Issue on Computational Methods in Stochastic Mechanics and Reliability Analysis · Zbl 1088.65002
[24] Mohan, P. S.; Nair, P. B.; Keane, A. J., Multi-element stochastic reduced basis methods, Comput. Methods Appl. Mech. Eng., 197, 1495-1506 (2008) · Zbl 1194.65025
[25] Nguyen, N., A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales, J. Comput. Phys., 227, 9807-9822 (2008) · Zbl 1155.65391
[26] Nouy, A., Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms, Comput. Methods Appl. Mech. Eng., 197, 4718-4736 (2008) · Zbl 1194.74458
[27] Nouy, A., Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations, Arch. Comput. Methods Eng., 16, 251-285 (2009) · Zbl 1360.65036
[28] Papadrakakis, M.; Papadopoulos, V., Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation, Comput. Methods Appl. Mech. Eng., 134, 325-340 (1996) · Zbl 0891.73079
[29] Parés, N.; Díez, P.; Huerta, A., A subdomain-based flux-free a posteriori error estimators, Comput. Methods Appl. Mech. Engrg., 195, 297-323 (2006) · Zbl 1193.65191
[30] Pellissetti, M. F.; Ghanem, R. G., Iterative solution of systems of linear equations arising in the context of stochastic finite elements, Adv. Eng. Softw., 31, 607-616 (2000) · Zbl 1003.68553
[31] Puig, B.; Poirion, F.; Soize, C., Non-gaussian simulation using hermite polynomial expansion: convergences and algorithms, Probab. Eng. Mech., 17, 253-264 (2002)
[32] Sachdeva, S. K.; Nair, P. B.; Keane, A. J., Hybridization of stochastic reduced basis methods with polynomial chaos expansions, Probab. Eng. Mech., 21, 182-192 (2006)
[33] Schuëller, G. I., A state-of-the-art report on computational stochastic mechanics, Probab. Eng. Mech., 12, 197-321 (1997), A State-of-the-Art Report on Computational Stochastic Mechanics
[34] Stefanou, G., The stochastic finite element method: past, present and future, Comput. Methods Appl. Mech. Engrg., 198, 1031-1051 (2009) · Zbl 1229.74140
[35] Sudret, B.; Berveiller, M.; Lemaire, M., Eléments finis stochastiques en élasticité linéaire, Comptes Rendus Mécanique, 332, 531-537 (2004) · Zbl 1223.74042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.