×

zbMATH — the first resource for mathematics

Multi-period mixed production planning with uncertain demands: fuzzy and interval fuzzy sets approach. (English) Zbl 1252.90019
Summary: This paper shows a general model of a mixed production planning problem with fuzzy demands. The main focus is the development of a model for production planning using fuzzy sets in order to use classical mathematical programming techniques to reach an optimal solution over a multiple criteria context. The classical fuzzy linear programming model namely the soft constraints model is used to involve flexibility in the problem. Moreover, an interval fuzzy set approach is used to involve uncertainty in the problem.

MSC:
90B30 Production models
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Klir, G.J.; Yuan, B., Fuzzy sets and fuzzy logic: theory and applications, (1995), Prentice Hall · Zbl 0915.03001
[2] Lai, Y.J.; Hwang, C., Fuzzy mathematical programming, (1992), Springer Verlag
[3] Kacprzyk, J.; Orlovski, S.A., Optimization models using fuzzy sets and possibility theory, (1987), Kluwer Academic Press · Zbl 0619.00013
[4] Zimmermann, H.J., Fuzzy programming and linear programming with several objective functions, Fuzzy sets syst., 1, 1, 45-55, (1978) · Zbl 0364.90065
[5] Zimmermann, H.J.; Fullér, R., Fuzzy reasoning for solving fuzzy mathematical programming problems, Fuzzy sets syst., 60, 1, 121-133, (1993) · Zbl 0795.90086
[6] Tanaka, H.; Asai, K.; Okuda, T., On fuzzy mathematical programming, J. cybern., 3, 37-46, (1974) · Zbl 0297.90098
[7] Chanas, S., The use of parametric programming in fuzzy linear-programming, Fuzzy sets syst., 11, 243-251, (1983) · Zbl 0534.90056
[8] Carlsson, C.; Korhonen, P., A parametric approach to fuzzy linear-programming, Fuzzy sets syst., 20, 17-30, (1986) · Zbl 0603.90093
[9] Lodwick, W.A.; Jamison, K.D., Theoretical and semantic distinctions of fuzzy, possibilistic, and mixed fuzzy/possibilistic optimization, Fuzzy sets syst., 158, 1, 1861-1872, (2007) · Zbl 1137.90763
[10] Lodwick, W.A.; Bachman, K.A., Solving large-scale fuzzy and possibilistic optimization problems, Fuzzy optim. decision making, 4, 257-278, (2005) · Zbl 1117.90079
[11] Inuiguchi, M.; Sakawa, M., A possibilistic linear program is equivalent to a stochastic linear program in a special case, Fuzzy sets syst., 76, 1, 309-317, (1995) · Zbl 0856.90131
[12] Inuiguchi, M.; Sakawa, M., Possible and necessary optimality tests in possibilistic linear programming problems, Fuzzy sets syst., 67, 29-46, (1994) · Zbl 0844.90110
[13] Inuiguchi, M.; Ramík, J., Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem, Fuzzy sets syst., 111, 3-28, (2000) · Zbl 0938.90074
[14] J.C. Figueroa, C.A. López, Linear programming with fuzzy joint parameters: a cumulative membership function approach, in: Annual Meeting of the IEEE North American Fuzzy Information Processing Society (NAFIPS), 2008.
[15] J.C. Figueroa, C.A. López, Pseudo-optimal solutions of FLP problems by using the cumulative membership function, in: Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), vol. 28, IEEE, 2009, pp. 1-6.
[16] Angelov, P.P., Optimization in an intuitionistic fuzzy environment, Fuzzy sets syst., 86, 3, 299-306, (1997) · Zbl 0915.90258
[17] Dubey, D.; Chandra, S.; Mehra, A., Fuzzy linear programming under interval uncertainty based on IFS representation, Fuzzy sets syst., 188, 1, 68-87, (2012) · Zbl 1251.90400
[18] J.C. Figueroa, Linear programming with interval Type-2 fuzzy right hand side parameters, in: Annual Meeting of the IEEE North American Fuzzy Information Processing Society (NAFIPS), 2008.
[19] J.C. Figueroa, Solving fuzzy linear programming problems with interval type-2 RHS, in: Conference on Systems, Man and Cybernetics, IEEE, 2009, pp. 1-6.
[20] J.C. Figueroa, Interval type-2 fuzzy linear programming: uncertain constraints, in: IEEE Symposium Series on Computational Intelligence, IEEE, 2011, pp. 1-6.
[21] J.C. Figueroa, G. Hernández, Computing optimal solutions of a linear programming problem with interval type-2 fuzzy constraints, Lecture Notes in Computer Science, vol. 7208, 2012, pp. 567-576.
[22] Peidro, D.; Mula, J.; Poler, R.; Verdegay, J., Fuzzy optimization for supply chain planning under supply, demand and process uncertainties, Fuzzy sets syst., 160, 2640-2657, (2009) · Zbl 1279.90206
[23] D. Peidro, J. Mula, R. Poler, Supply chain planning under uncertainty: a fuzzy linear programming approach, in: 2007 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), vol. 1, 2007, pp. 1-6. · Zbl 1190.90299
[24] Mula, J.; Poler, R.; García, J., MRP with flexible constraints: a fuzzy mathematical programming approach, Fuzzy sets syst., 157, 74-97, (2006) · Zbl 1085.90062
[25] Lee, Y.; Kim, S.; Moon, C., Production – distribution planning in supply chain using a hybrid approach, Prod. plann. control, 13, 35-46, (2002)
[26] Lee, Y.; Kim, S., Production – distribution planning in supply chain considering capacity constraints, Comput. ind. eng., 43, 169-190, (2002)
[27] Chanas, S.; Delgado, M.; Verdegay, J.; Vila, M., Interval and fuzzy extensions of classical transportation problems, Transp. plann. technol., 17, 202-218, (1993)
[28] Ángeles Gil, M.; López-Díaz, M.; Ralescu, D.A., Overview on the development of fuzzy random variables, Fuzzy sets syst., 157, 16, 2546-2557, (2007) · Zbl 1108.60006
[29] Gen, M.; Tsujimura, Y.; Ida, K., Method for solving multiobjective aggregate production planning problem with fuzzy parameters, Comput. ind. eng., 23, 117-120, (1992)
[30] J.M. Mendel, The perceptual computer: an architecture for computing with words, in: Proceedings of Modeling With Words Workshop - FUZZ-IEEE, 2001.
[31] Mendel, J.M., Computing with words and its relationships with fuzzistics, Inf. sci., 177, 1, 998-1006, (2007)
[32] Mendel, J.M., Computing with words: zadeh, Turing, popper and Occam, IEEE comput. intell. mag., 2, 1, 10-17, (2007)
[33] Zadeh, L.A., Toward a generalized theory of uncertainty (GTU): an outline, Inf. sci., 172, 1, 1-40, (2005) · Zbl 1074.94021
[34] Zadeh, L.A., From computing with numbers to computing with words—from manipulation of measures to manipulation of perceptions, IEEE trans. circuits syst. I: fundam. theory appl., 4, 1, 105-119, (1999) · Zbl 0954.68513
[35] M.A. Melgarejo, A fast recursive method to compute the generalized centroid of an interval Type-2 fuzzy set, in: Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), IEEE, 2007, pp. 190-194.
[36] Melgarejo, M.A., Implementing interval type-2 fuzzy processors, IEEE comput. intell. mag., 2, 1, 63-71, (2007)
[37] Niewiadomski, A., On type-2 fuzzy logic and linguistic summarization of databases, Bull. sect. logic, 38, 3, 215-227, (2009) · Zbl 1286.03097
[38] A. Niewiadomski, Imprecision measures for Type-2 fuzzy sets: applications to linguistic summarization of databases, Lecture Notes in Computer Science, vol. 5097(1), 2009, pp. 285-294.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.