×

zbMATH — the first resource for mathematics

Environmental supply chain network design using multi-objective fuzzy mathematical programming. (English) Zbl 1252.90010
Summary: The concern about environmental impact of business activities has spurred an interest in designing environmentally conscious supply chains. This paper proposes a multi-objective fuzzy mathematical programming model for designing an environmental supply chain under inherent uncertainty of input data in such problem. The proposed model is able to consider the minimization of multiple environmental impacts beside the traditional cost minimization objective to make a fair balance between them. A life cycle assessment-based (LCA-based) method is applied to assess and quantify the environmental impact of different options for supply chain network configuration. Also, to solve the proposed multi-objective fuzzy optimization model, an interactive fuzzy solution approach is developed. A real industrial case is used to demonstrate the significance and applicability of the developed fuzzy optimization model as well as the usefulness of the proposed solution approach.

MSC:
90B06 Transportation, logistics and supply chain management
90C29 Multi-objective and goal programming
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
90B90 Case-oriented studies in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ilgin, M.A.; Surendra, M.; Gupta, S.M., Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art, J. environ. manage., 91, 563-591, (2010)
[2] Meade, L.; Sarkis, J.; Presley, A., The theory and practice of reverse logistics, Int. J. logistics syst. manage., 3, 56-84, (2007)
[3] Srivastara, S.K., Green supply-chain management: a state-of-the-art literature review, Int. J. manage. rev., 9, 1, 53-80, (2007)
[4] Linton, J.; Klassen, R.; Jayaraman, V., Sustainable supply chains: an introduction, J. oper. manage., 25, 6, 1075-1082, (2007)
[5] Melo, M.T.; Nickel, S.; Saldanha-da-Gama, F., Facility location and supply chain management - A review, Eur. J. oper. res., 196, 401-412, (2009) · Zbl 1163.90341
[6] Fleischmann, M.; Bloemhof-Ruwaard, J.M.; Beullens, P.; Dekker, R., Reverse logistics network design, (), 65-94
[7] Barros, A.I.; Dekker, R.; Scholten, V., A two-level network for recycling sand: A case study, Eur. J. oper. res., 110, 199-214, (1998) · Zbl 0948.90087
[8] Jayaraman, V.; Guige, V.D.R.; Srivastava, R., A closed-loop logistics model for manufacturing, J. oper. res. soc., 50, 497-508, (1999) · Zbl 1054.90521
[9] Krikke, H.R.; Van Harten, A.; Schuur, P.C., Reverse logistic network re-design for copiers, OR spektrum, 21, 381-409, (1999) · Zbl 0940.90011
[10] Du, F.; Evans, G.W., A bi-objective reverse logistics network analysis for post-Sale service, Comput. oper. res., 35, 2617-2634, (2008) · Zbl 1179.90033
[11] Fonseca, M.C.; García-Sánchez, A.; Ortega-Mier, M.; Saldanha-da-Gama, F., A stochastic bi-objective location model for strategic reverse logistics, Top, 18, 1, 158-184, (2010) · Zbl 1201.90113
[12] Demirel, N.Ö.; Gökçen, H., A mixed integer programming model for remanufacturing in reverse logistics environment, Int. J. adv. manuf. technol., 39, 1197-1206, (2008)
[13] Mutha, A.; Pokharel, S., Strategic network design for reverse logistics and remanufacturing using new and old product modules, Comput. ind. eng., 56, 334-346, (2009)
[14] Lee, J.E.; Gen, M.; Rhee, K.G., Network model and optimization of reverse logistics by hybrid genetic algorithm, Comput. ind. eng., 56, 51-964, (2009)
[15] Aras, N.; Aksen, D., Locating collection centers for distance- and incentive-dependent returns, Int. J. prod. econ., 111, 316-333, (2008)
[16] Pishvaee, M.S.; Farahani, R.Z.; Dullaert, W., A memetic algorithm for bi-objective integrated forward/reverse logistics network design, Comput. oper. res., 37, 1100-1112, (2010) · Zbl 1178.90060
[17] Ko, H.J.; Evans, G.W., A genetic-based heuristic for the dynamic integrated forward/reverse logistics network for 3pls, Comput. oper. res., 34, 346-366, (2007) · Zbl 1113.90028
[18] Wang, H.F.; Hsu, H.W., A closed-loop logistic model with a spanning-tree based genetic algorithm, Comput. oper. res., 37, 376-389, (2010) · Zbl 1175.90263
[19] Listes, O., A generic stochastic model for supply-and-return network design, Comput. oper. res., 34, 417-442, (2007) · Zbl 1113.90024
[20] Pishvaee, M.S.; Jolai, F.; Razmi, J., A stochastic optimization model for integrated forward/reverse logistics network design, J. manufact. syst., 28, 107-114, (2009)
[21] El-Sayed, M.; Afia, N.; El-Kharbotly, A., A stochastic model for forward_reverse logistics network design under risk, Comput. ind. eng., 58, 423-431, (2010)
[22] Pishvaee, M.S.; Torabi, S.A., A possibilistic programming approach for closed-loop supply chain network design under uncertainty, Fuzzy sets syst., 161, 2668-2683, (2010) · Zbl 1230.90204
[23] H.F. Wang, H.W. Hsu, Resolution of an uncertain closed-loop logistics model: an application to fuzzy linear programs with risk analysis. J. Environ. Manage. (in press).
[24] Pishvaee, M.S.; Rabbani, M.; Torabi, S.A., A robust optimization approach to closed-loop supply chain network design under uncertainty, Appl. math. model., 35, 637-649, (2011) · Zbl 1205.90056
[25] Hugo, A.; Pistikopoulos, E.N., Environmentally conscious long-range planning and design of supply chain networks, J. cleaner prod., 13, 1471-1491, (2005)
[26] Quariguasi Frota Neto, J.; Bloemhof-Ruwaard, J.M.; van Nunen, J.A.E.E.; van Heck, E., Designing and evaluating sustainable logistics networks, Int. J. prod. econ., 111, 195-208, (2008)
[27] Quariguasi Frota Neto, J.; Walther, G.; Bloemhof, J.; van Nunen, J.A.E.E.; Spengler, T., A methodology for assessing eco-efficiency in logistics networks, Eur. J. oper. res., 193, 670-682, (2009) · Zbl 1175.90048
[28] WHO (World Health Organization). Safe Management of Bio-medical Sharps Waste in India: A Report on Alternative Treatment and Non-Burn Disposal Practices, 2005.
[29] J.J. Hanson, R.W. Hitchcock, Towards sustainable design for single-use medical devices, in: 31st annual international conference of the IEEE EMBS Minneapolis (2009), Minnesota, USA, September 2-6.
[30] Hauri, A.M.; Armstrong, G.L.; Hutin, Y.J.F., The global burden of disease attributable to contaminated injections given in health care settings, Int. J. STD AIDS, 15, 7-16, (2004)
[31] WHO (World Health Organization). Health-care Waste Management, policy paper, August 2004.
[32] WHO (World Health Organization). Procuring single-use injection equipment and safety boxes, May 2003.
[33] USEPA (1997), Study report to Congress. Volume II: an inventory of anthropogenic mercury emissions in the United Sates.
[34] Zhao, W.; van der Voet, E.; Huppes, G.; Zhang, Y., Comparative life cycle assessments of incineration and non-incineration treatments for medical waste, Int. J. life cycle assess., 14, 114-121, (2009)
[35] Pati, R.K.; Vrat, P.; Kumar, P., A goal programming model for paper recycling system, Omega, 36, 405-417, (2008)
[36] Zadeh, L., Fuzzy sets as a basis for a theory of possibility, Fuzzy sets syst., 1, 3-28, (1978) · Zbl 0377.04002
[37] Tanaka, H., Fuzzy data analysis by possibilistic linear models, Fuzzy sets syst., 24, 363-375, (1987) · Zbl 0633.93060
[38] Lai, Y.J.; Hwang, C.L., A new approach to some possibilistic linear programming problems, Fuzzy sets syst., 49, 121-133, (1992)
[39] M. Goedkoop, R. Spriensma, The Eco-indicator 99, A damage oriented method for Life Cycle Impact Assessment: Methodology Report. (third edition), PRé Consultants (2000), Amersfoort, Netherlands.
[40] Rebitzera, G.; Ekvallb, T.; Frischknechtc, R.; Hunkelerd, D.; Norrise, G.; Rydbergf, T.; Schmidtg, W.; Suhh, S.; Weidemai, B.P.; Penningtonf, D.W., Life cycle assessment part 1: framework, goal and scope definition, inventory analysis and applications, Environ. int., 30, 701-720, (2004)
[41] Chiu, C.T.; Hsu, T.H.; Yang, W.F., Life cycle assessment on using recycled materials for rehabilitating asphalt pavements, Resour. conserv. recycl., 52, 545-556, (2008)
[42] Ministry of Housing, Spatial planning and the Environment, The Eco-indicator 99, A damage oriented method for Life Cycle Impact Assessment: Manual for designers, Netherlands, (2000).
[43] Dubois, D.; Fargier, H.; Fortemps, P., Fuzzy scheduling: modelling flexible constraints vs. coping with incomplete knowledge, Eur. J. oper. res., 147, 231-252, (2003) · Zbl 1037.90028
[44] Bellman, R.E.; Zadeh, L.A., Decision making in a fuzzy environment, Manag. sci., 17, 141-164, (1970) · Zbl 0224.90032
[45] Mula, J.; Poler, R.; Garcia, J.P., MRP with flexible constraints: a fuzzy mathematical programming approach, Fuzzy sets syst., 157, 74-97, (2006) · Zbl 1085.90062
[46] Jimenez, M.; Arenas, M.; Bilbao, A.; Rodriguez, M.V., Linear programming with fuzzy parameters: an interactive method resolution, Eur. J. oper. res., 177, 1599-1609, (2007) · Zbl 1102.90345
[47] Liang, T.F., Distribution planning decisions using interactive fuzzy multi-objective linear programming, Fuzzy sets syst., 157, 1303-1316, (2006) · Zbl 1132.90384
[48] Jimenez, M., Ranking fuzzy numbers through the comparison of its expected intervals, Int. J. uncertain. fuzziness knowl. based syst., 4, 4, 379-388, (1996) · Zbl 1232.03040
[49] Zimmermann, H.J., Fuzzy programming and linear programming with several objective functions, Fuzzy sets syst., 1, 45-55, (1978) · Zbl 0364.90065
[50] Sakawa, M.; Yano, H.; Yumine, T., An interactive fuzzy satisfying method for multi objective linear-programming problems and its application, IEEE trans. syst. man cybern. SMC, 17, 654-661, (1987)
[51] Lai, Y.J.; Hwang, C.L., Possibilistic linear programming for managing interest rate risk, Fuzzy sets syst., 54, 135-146, (1993)
[52] Selim, H.; Ozkarahan, I., A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach, Int. J. adv. manuf. technol., 36, 401-418, (2008)
[53] Torabi, S.A.; Hassini, E., An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy sets syst., 159, 193-214, (2008) · Zbl 1168.90352
[54] Li, X.Q.; Zhang, B.; Li, H., Computing efficient solutions to fuzzy multiple objective linear programming problems, Fuzzy sets syst., 157, 1328-1332, (2006) · Zbl 1132.90383
[55] C.L. Hwang, A. Masud, Multiple Objective Decision Making. Methods and Applications: A State of the Art Survey, Lecture Notes in Economics and Mathematical Systems 164, Springer-Verlag, Berlin (1979). · Zbl 0397.90001
[56] Ehrgott, M., Multicriteria optimization, (2005), Springer New York · Zbl 1132.90001
[57] Mavrotas, G., Effective implementation of the &z.epsiv;-constraint method in multi-objective mathematical programming problems, Appl. math. comput., 213, 455-465, (2009) · Zbl 1168.65029
[58] http://www.hotfile.com/dl/131037350/9f31db6/Case-study-Data.docx.html.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.