zbMATH — the first resource for mathematics

A lattice Boltzmann model for blood flows. (English) Zbl 1252.76068
Summary: A lattice Boltzmann model for blood flows is proposed. The lattice Boltzmann Bi-viscosity constitutive relations and control dynamics equations of blood flow are presented. A non-equilibrium phase is added to the equilibrium distribution function in order to adjust the viscosity coefficient. By comparison with the rheology models, we find that the lattice Boltzmann Bi-viscosity model is more suitable to study blood flow problems. To demonstrate the potential of this approach and its suitability for the application, based on this validate model, as examples, the blood flow inside the stenotic artery is investigated.

76M28 Particle methods and lattice-gas methods
76Z05 Physiological flows
76A10 Viscoelastic fluids
92C35 Physiological flow
Full Text: DOI
[1] Chen, S.Y.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Annu. fluid mech., 3, 314-322, (1998)
[2] Qian, Y.H.; d’Humieres, D.; Lallemand, P., Lattice BGK model for navier – stokes equations, Europhys. lett., 17, 6, 479-484, (1992) · Zbl 1116.76419
[3] Chen, H.D.; Chen, S.Y.; Matthaeus, M.H., Recovery of the navier – stokes equations using a lattice Boltzmann gas method, Phys. rev. A, 45, 5339-5342, (1992)
[4] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys. rep., 222, 147-197, (1992)
[5] Frisch, U.; Hasslacher, B.; Pomeau, Y., Lattice gas automata for the navier – stokes equations, Phys. rev. lett., 56, 1505-1508, (1986)
[6] Yan, Guangwu; Zhang, Jianying; Liu, Yanhong; Dong, Yinfeng, A multi-energy-level lattice Boltzmann model for the compressible navier – stokes equations, Int. J. numer. meth. fluids, 559, 41-56, (2007) · Zbl 1119.76049
[7] Shan, X.W.; Chen, H.D., Lattice Boltzmann model of simulating flows with multiple phases and components, Phys. rev. E, 47, 1815, (1993)
[8] Davies, A.R.; Summers, J.L.; Wilson, M.C.T., On a dynamic wetting model for the finite-density multiphase lattice Boltzmann method, Int. J. comput. fluid dyn., 20, 6, 415-425, (2006) · Zbl 1110.76041
[9] Ladd, A., Numerical simulations of particle suspensions via a discretized Boltzmann equation. part 2. numerical results, J. fluids mech., 271, 311, (1994)
[10] Dawson, S.P.; Chen, S.Y.; Doolen, G.D., Lattice Boltzmann computations for reaction – diffusion equations, J. chem. phys., 98, 1514-1523, (1993)
[11] Gao, H.; Han, J.; Jin, Y.; Wang, L.P., Modelling microscale flow and colloed transport in saturated porous media, Int. J. comput. fluid dyn., 22, 7, 493-505, (2008) · Zbl 1184.76792
[12] Ahrenholz, B.; Tölke, J.; Krafczyk, M., Lattice-Boltzmann simulations in reconstructed parametrized porous media, Int. J. comput. fluid dyn., 20, 6, 369-377, (2006) · Zbl 1370.76141
[13] Yan, G.W., A lattice Boltzmann equation for waves, J. comput. phys., 161, 61-69, (2000) · Zbl 0969.76076
[14] Duan, Y.L.; Liu, R.X., Lattice Boltzmann model for two-dimensional unsteady Burgers equation, Comput. appl. math., 206, 1, (2007) · Zbl 1115.76064
[15] Yan, G.W.; Zhang, J.Y., A higher-order moment method of the lattice Boltzmann model for the korteweg – de Vries equation, Math. comput. simulat., 79, 5, 1554-1565, (2009) · Zbl 1159.65086
[16] Palpacelli, S.; Succi, S., Numerical validation of the quantum lattice Boltzmann scheme in two and three dimension, Phys. rev. E, 75, 066704, (2007)
[17] Pelliccioni, O.; Cerrolaza, M.; Herrera, M., Lattice Boltzmann dynamic simulation of a mechanical heart valve device, Math. comput. simulat., 75, 1-14, (2007) · Zbl 1111.92014
[18] Krafczyk, M.; Cerrolaza, M.; Schulz, M.; Rank, E., Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice -Boltzmann methods, J. biomech., 31, 453-462, (1998)
[19] Zhang, X.J.; Li, X.Y.; He, F., Numerical simulation of blood flow in stented aneurysm using lattice Boltzmann method, IFMBE proc., 19, 113-116, (2008)
[20] Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D.A.; Yilmaz, H.; Courbebaisse, G., Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm, Comput. phys. commun., 179, 128-131, (2008) · Zbl 1197.76105
[21] Hirabayashi, M.; Ohta, M.; Rüfenacht, D.A.; Chopard, B., A lattice Boltzmann study of blood flow in stented aneurysm, Future gener. comput. syst., 20, 925-934, (2004)
[22] Ouared, R.; Chopard, B., Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes, J. stat. phys., 121, 209-221, (2005) · Zbl 1108.76089
[23] Sun, C.H.; Jain, R.K.; Munn, L.L., Non-uniform plasma leakage affects local hematocrit and blood flow: implications for inflammation and tumor perfusion, Ann. biomed. eng., 35, 12, 2121-2129, (2007)
[24] Sun, C.H.; Munn, L.L., Lattice-Boltzmann simulation of blood flow in digitized vessel networks, Comput. math. appl., 55, 1594-1600, (2008) · Zbl 1142.76531
[25] Dupin, M.M.; Halliday, I.; Care, C.M.; Munn, L.L., Lattice Boltzmann modeling of blood cell dynamics, Int. J. comput. fluid dyn., 22, 7, 481-492, (2008) · Zbl 1184.76791
[26] Artoli, A.M.; Hoekstra, A.G.; Sloot, P.M.A., Mesoscopic simulations of systolic flow in the human abdominal aorta, J. biomech., 39, 873-884, (2006) · Zbl 1099.76051
[27] Hyakutake, T.; Matsumoto, T.; Yanase, S., Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations, Math. comput. simulat., 72, 134-140, (2006) · Zbl 1097.92018
[28] Guigao, L.; Zhang, J.F., Boundary slip from the immersed boundary lattice Boltzmann models, Phys. rev. E, 79, 026701, (2009)
[29] Tamagawa, M.; Fukushima, K.; Hiramoto, M., Prediction of thrombus formation in blood flow by CFD and its modeling, IFMBE proc., 14, 3159-3160, (2007)
[30] Schelin, A.B.; Karolyi, G.; de Moura, A.P.S.; Booth, N.A.; Grebogi, C., Chaotic advection in blood flow, Phys. rev. E, 80, 016213, (2009)
[31] Jung, J.; Hassanein, A.; Lyczkowski, W.Robert., Hemodynamic computation using multiphase flow dynamics in a right coronary artery, Ann. biomed., 34, 393-407, (2006)
[32] Mukundakrishnan, K.; Ayyaswamy, P.S.; Eckmann, D.M., Finite-sized gas bubble motion in a blood vessel: non-Newtonian effects, Phys. rev. E, 78, 036303, (2008)
[33] Appanaboyina, S.; Mut, F.; Löhner, R.; Scrivano, E.; Miranda, C.; Lylyk, P.; Putman, C.; Cebral, J., Computational modeling of blood flow in side arterial branches after stenting of cerebral aneurysms, Int. J. comput. fluid dyn., 22, 10, 669-676, (2008) · Zbl 1184.76916
[34] Munn, L.L.; Dupin, M.M., Blood cell interactions and segregation in flow, Ann. biomed. eng., 36, 534-544, (2008)
[35] Doddi, S.K.; Bagchi, P., Three-dimensional computational modeling of multiple deformable cells flowing in microvessels, Phys. rev. E, 79, 046318, (2009)
[36] Kaoui, B.; Biros, G.; Misbah, C., Why do red blood cells have asymmetric shapes even in a symmetric flow?, Phys. rev. lett., 103, 188101, (2009)
[37] Noguchi, H., Swinging and synchronized rotations of red blood cells in simple shear flow, Phys. rev. E, 80, 021902, (2009)
[38] Wang, T.; Pan, T.W.; Xing, Z.W.; Glowinski, R., Numerical simulation of rheology of red blood cell rouleaux in microchannels, Phys. rev. E, 79, 041916, (2009)
[39] Dai, G.C.; Chen, M.H., Fluid mechanics in chemical engineering, company of chemical engineering, Beijing, 281-286, (2005), (in Chinese)
[40] Eldabe, N.T.M.; Eo-Sayed, M.F.; Ghaly, A.Y.; Sayed, H.M., Peristaltically induced transport of a MHD biviscosity fluid in a non-uniform tube, Physica A, 383, 253-266, (2007)
[41] Yang, S.P.; Zhu, K.Q., Analytical solutions for squeeze flow of Bingham fluid with Navier slip condition, J. non-Newtonian fluid mech., 138, 73-180, (2006) · Zbl 1195.76073
[42] Khatib, M.A.M.A.; Wilson, S.D.R., Slow dripping of yield-stress fluids, J. fluid. eng., 127, 687, (2005)
[43] Chapman, S.; Cowling, T.G., The mathematical theory of non-uniform gas, (1970), Cambridge University Press Cambridge · Zbl 0098.39702
[44] Chopard, B.; Dupuis, A.; Masselot, A.; Luthi, P., Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems, Adv. complex syst., 2&3, 103-246, (2002) · Zbl 1090.82030
[45] Fang, H.P.; Wang, Z.W.; Lin, Z.F.; Liu, M.R., Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels, Phys. rev. E, 65, 051925, (2002)
[46] Kehrwald, D., Lattice Boltzmann simulation of shear-thinning fluids, J. stat. phys., 121, 112, (2005) · Zbl 1085.82009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.