×

zbMATH — the first resource for mathematics

Provably secure threshold public-key encryption with adaptive security and short ciphertexts. (English) Zbl 1250.94042
Summary: Threshold public-key encryption is a cryptographic primitive allowing decryption control in group-oriented encryption applications. Existing TPKE schemes suffer from long ciphertexts with size linear in the number of authorized users or can only achieve non-adaptive security, which is too weak to capture the capacity of the attackers in the real world. In this paper, we propose an efficient TPKE scheme with constant-size ciphertexts and adaptive security. Security is proven under the decision bilinear Diffie-Hellman exponentiation assumption in the standard model. Then we extend our basic construction with efficient trade-offs between the key size and the ciphertext size. Finally, we illustrate improvements to transmit multiple secret session keys in one session with almost no extra cost.

MSC:
94A60 Cryptography
68P25 Data encryption (aspects in computer science)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ak, M.; Kaya, K.; Onarlioglu, K.; Selçuk, A.-A., Efficient broadcast encryption with user profiles, Information sciences, 180, 6, 1060-1072, (2010)
[2] Baek, J.; Zheng, Y., Identity-based threshold decryption, (), 262-276 · Zbl 1198.94079
[3] Bethencourt, J.; Sahai, A.; Waters, B., Ciphertext-policy attribute-based encryption, (), 321-334
[4] Blakley, G.R.; Meadows, C., Security of ramp schemes, (), 242-268 · Zbl 1359.68062
[5] Boneh, D.; Boyen, X.; Goh, E.J., Hierarchical identity based encryption with constant size ciphertext, (), 440-456 · Zbl 1137.94340
[6] Boneh, D.; Gentry, C.; Waters, B., Collusion resistant broadcast encryption with short ciphertexts and private keys, (), 258-275 · Zbl 1145.94434
[7] Boneh, D.; Sahai, A.; Waters, B., Fully collusion resistant traitor tracing with short ciphertexts and private keys, (), 573-592 · Zbl 1140.94326
[8] Boneh, D.; Waters, B., A fully collusion resistant broadcast, trace, and revoke system, (), 211-220
[9] Canetti, R.; Garay, J.; Itkis, G.; Micciancio, D.; Naor, M.; Pinkas, B., Multicast security: a taxonomy and some efficient constructions, (), 708-716
[10] Canetti, R.; Goldwasser, S., An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext attack, (), 90-106 · Zbl 0948.94008
[11] Canetti, R.; Malkin, T.; Nissim, K., Efficient communication-storage tradeoffs for multicast encryption, (), 459-474 · Zbl 0937.68043
[12] Chen, X.; Zhang, F.; Tian, H.; Wei, B.; Susilo, W.; Mu, Y.; Lee, H.; Kim, K., Efficient generic on-line/off-line (threshold) signatures without key exposure, Information sciences, 178, 21, 4192-4203, (2008) · Zbl 1148.94008
[13] Daza, V.; Herranz, J.; Morillo, P.; Ràfols, C., CCA2-secure threshold broadcast encryption with shorter ciphertexts, (), 35-50 · Zbl 1138.94360
[14] Daza, V.; Herranz, J.; Morillo, P.; Ràfols, C., Ad-hoc threshold broadcast encryption with shorter ciphertexts, Electronic notes in theoretical computer science, 192, 22, 3-5, (2008) · Zbl 1277.94022
[15] Delerablée, C.; Pointcheval, D., Dynamic threshold public-key encryption, (), 317-334 · Zbl 1183.94028
[16] Dodis, Y.; Fazio, N., Public key broadcast encryption for stateless receivers, (), 61-80 · Zbl 1327.94041
[17] Fiat, A.; Naor, M., Broadcast encryption, (), 480-491 · Zbl 0870.94026
[18] Goyal, V.; Pandey, O.; Sahai, A.; Waters, B., Attribute-based encryption for finegrained access control of encrypted data, (), 89-98
[19] Ghodosi, H.; Pieprzyk, J.; Safavi-Naini, R., Dynamic threshold cryptosystems: a new scheme in group oriented cryptography, (), 370-379
[20] Gentry, C.; Waters, B., Adaptive security in broadcast encryption systems (with short ciphertexts), (), 171-188 · Zbl 1239.94073
[21] Goodrich, M.T.; Sun, J.Z.; Tamassia, R., Efficient tree-based revocation in groups of low-state devices, (), 511-527 · Zbl 1104.94021
[22] Guo, H.; Li, Z.; Mu, Y.; Zhang, X., Provably secure identity-based authenticated key agreement protocols with malicious private key generators, Information sciences, 181, 3, 628-647, (2011) · Zbl 1204.94087
[23] Halevy, D.; Shamir, A., The LSD broadcast encryption scheme, (), 47-60 · Zbl 1026.94528
[24] Huang, X.; Susilo, W.; Mu, Y.; Wu, W., Secure universal designated verifier signature without random oracles, International journal of information security, 7, 3, 171-183, (2008)
[25] Katz, J.; Wang, N., Efficiency improvements for signature schemes with tight security reductions, (), 155-164
[26] Libert, B.; Quisquater, J.-J., Efficient revocation and threshold pairing based cryptosystems, (), 163-171 · Zbl 1321.94078
[27] Libert, B.; Yung, M., Adaptively secure non-interactive threshold cryptosystems, (), 588-600 · Zbl 1334.94085
[28] Lim, C.H.; Lee, P.J., Directed signatures and application to threshold cryptosystems, (), 131-138
[29] Qin, B.; Wu, Q.; Zhang, L.; Domingo-Ferrer, J., Threshold public-key encryption with adaptive security and short ciphertexts, (), 62-76 · Zbl 1295.94134
[30] Shamir, A., How to share a secret, Communications of the ACM, 22, 612-613, (1979) · Zbl 0414.94021
[31] Sherman, A.T.; McGrew, D.A., Key establishment in large dynamic groups using one-way function trees, IEEE transactions on software engineering, 29, 5, 444-458, (2003)
[32] V. Shoup, ISO 18033-2: An Emerging Standard for Public-Key Encryption, Final Committee Draft (December 2004).
[33] Wallner, D.M.; Harder, E.J.; Agee, R.C., Key management for multicast: issues and architectures, IETF draft wallner-key, (1997)
[34] Wong, C.K.; Gouda, M.; Lam, S., Secure group communications using key graphs, IEEE/ACM transactions on networking, 8, 1, 16-30, (2000)
[35] Wu, Q.; Mu, Y.; Susilo, W.; Qin, B.; Domingo-Ferrer, J., Asymmetric group key agreement, (), 153-170 · Zbl 1239.94078
[36] Wu, Q.; Qin, B.; Zhang, L.; Domingo-Ferrer, J.; Farràs, O., Bridging broadcast encryption and group key agreement, (), 143-160 · Zbl 1227.94067
[37] Yuan, H.; Zhang, F.; Huang, X.; Mu, Y.; Susilo, W.; Zhang, L., Certificateless threshold signature scheme from bilinear maps, Information sciences, 180, 23, 4714-4728, (2010) · Zbl 1208.94062
[38] Zhang, L.; Zhang, F.; Wu, Q.; Domingo-Ferrer, J., Simulatable certificateless two-party authenticated key agreement protocol, Information sciences, 180, 6, 1020-1030, (2010) · Zbl 1185.94085
[39] Zhang, M.; Yang, B.; Takagi, T., Group-oriented setting’s multisigncryption scheme with threshold designcryption, Information sciences, 181, 18, 4041-4050, (2011) · Zbl 1276.94025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.