# zbMATH — the first resource for mathematics

Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows. (English) Zbl 1250.76127
Summary: Maximum drag reduction (MDR), the asymptotic upper limit of reduction in turbulent friction drag by polymer additives, is the most important unsolved problem in viscoelastic turbulence. Recent studies of turbulence in minimal flow units have identified time intervals showing key features of MDR. These intervals, denoted ‘hibernating turbulence’ are found in both Newtonian and viscoelastic flows. The present study provides a comprehensive examination of this turbulence hibernation phenomenon in the minimal channel geometry, and discusses its impact on the turbulent dynamics and drag reduction. Similarities between hibernating turbulence and MDR are established in terms of both flow statistics (an intermittency factor, mean and fluctuating components of velocity) and flow structure (weak vortices and nearly streamwise-invariant kinematics). Hibernation occurs more frequently at high levels of viscoelasticity, leading to flows that increasingly resemble MDR. Viscoelasticity facilitates the occurrence of hibernation by suppressing the conventional ‘active’ turbulence, but has little influence on hibernation itself. At low Weissenberg number $$Wi$$, the average duration of active turbulence intervals is constant, but above a critical value of $$Wi$$, the duration decreases dramatically, and accordingly, the fraction of time spent in hibernation increases. This observation can be explained with a simple mathematical model that posits that the lifetime of an active turbulence interval is the time that it takes for the turbulence to stretch polymer molecules to a certain threshold value; once the molecules exceed this threshold, they exert a large enough stress on the flow to suppress the active turbulence. This model predicts an explicit form for the duration as a function of $$Wi$$ and the simulation results match this prediction very closely. The critical point where hibernation frequency becomes substantially increased coincides with the point where qualitative changes are observed in overall flow statistics – the transition between ‘low-drag-reduction’ and ‘high-drag-reduction’ regimes. Probability density functions of important variables reveal a much higher level of intermittency in the turbulent dynamics after this transition. It is further confirmed that hibernating turbulence is a Newtonian structure during which polymer extension is small. Based on these results, a framework is proposed that explains key transitions in viscoelastic turbulence, especially the convergence toward MDR.

##### MSC:
 76F70 Control of turbulent flows 76A10 Viscoelastic fluids
##### Keywords:
turbulent flows; viscoelasticity
Full Text:
##### References:
 [1] Batchelor, The Theory of Homogeneous Turbulence (1953) · Zbl 0053.14404 [2] DOI: 10.1063/1.1566753 · Zbl 1186.76556 [3] DOI: 10.1017/S0022112001004189 · Zbl 0987.76034 [4] DOI: 10.1017/S0022112007006611 · Zbl 1175.76069 [5] DOI: 10.1103/PhysRevLett.100.134504 [6] DOI: 10.1017/S0022112007006301 · Zbl 1123.76022 [7] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025 [8] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040 [9] DOI: 10.1063/1.1825451 · Zbl 1187.76248 [10] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 [11] DOI: 10.1063/1.1850920 · Zbl 1187.76219 [12] DOI: 10.1063/1.1589484 · Zbl 1186.76235 [13] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 [14] DOI: 10.1017/S002211200999187X · Zbl 1183.76784 [15] DOI: 10.1063/1.2920275 · Zbl 1182.76844 [16] DOI: 10.1063/1.1924650 · Zbl 1187.76575 [17] DOI: 10.1103/PhysRevLett.108.028301 [18] DOI: 10.1017/S0022112010000066 · Zbl 1189.76326 [19] Graham, Rheology Reviews 2004 pp 143– (2004) [20] DOI: 10.1017/S0022112009990863 · Zbl 1183.76688 [21] DOI: 10.1017/S002211200800267X · Zbl 1151.76453 [22] DOI: 10.1063/1.457480 [23] DOI: 10.1103/PhysRevLett.104.218301 [24] DOI: 10.1103/PhysRevLett.91.224502 [25] DOI: 10.1017/S0022112008003248 · Zbl 1151.76495 [26] DOI: 10.1088/1468-5248/1/1/001 · Zbl 1082.76542 [27] DOI: 10.1063/1.1863284 · Zbl 1187.76570 [28] DOI: 10.1017/S0022112004000291 · Zbl 1067.76052 [29] DOI: 10.1016/S0045-7930(01)00069-X · Zbl 1075.76556 [30] DOI: 10.1007/s00348-003-0630-0 [31] DOI: 10.1103/PhysRevE.67.056312 [32] DOI: 10.1146/annurev.fluid.40.111406.102156 · Zbl 1229.76043 [33] DOI: 10.1007/s10494-005-9002-6 · Zbl 1200.76106 [34] DOI: 10.1017/S0022112005003666 · Zbl 1070.76030 [35] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 [36] DOI: 10.1017/S0022112010003939 · Zbl 1225.76171 [37] DOI: 10.1063/1.869323 · Zbl 1185.76787 [38] Bird, Dynamics of polymeric liquids vol. 2 (1987) [39] DOI: 10.1007/s003480050371 [40] DOI: 10.1007/s003480050020 [41] DOI: 10.1103/PhysRevLett.95.194502 [42] DOI: 10.1103/PhysRevLett.98.204501 [43] DOI: 10.1103/PhysRevLett.81.4140 [44] DOI: 10.1063/1.869185 [45] DOI: 10.1017/S0022112007005459 · Zbl 1175.76074 [46] DOI: 10.1002/aic.690210402 [47] DOI: 10.1017/S0022112071000120 [48] DOI: 10.1016/j.fluiddyn.2005.09.001 · Zbl 1178.76177 [49] DOI: 10.1017/S0022112003003768 · Zbl 1034.76014 [50] DOI: 10.1017/jfm.2011.334 · Zbl 1241.76306 [51] DOI: 10.1063/1.869229 [52] DOI: 10.1103/PhysRevLett.89.208301 [53] DOI: 10.1063/1.1775192 · Zbl 1187.76502 [54] DOI: 10.1063/1.1563258 · Zbl 1186.76502 [55] DOI: 10.1017/S0022112099007818 · Zbl 0959.76005 [56] DOI: 10.1017/S0022112083000634 [57] DOI: 10.1103/PhysRevLett.96.174101 [58] DOI: 10.1103/PhysRevLett.104.104501 [59] DOI: 10.1103/PhysRevLett.99.034502 [60] DOI: 10.1080/14685240802448626 · Zbl 1273.76116 [61] DOI: 10.1063/1.3258758 · Zbl 1183.76451 [62] DOI: 10.1146/annurev.fl.23.010191.003125 [63] DOI: 10.1017/S0022112003005305 · Zbl 1063.76580 [64] DOI: 10.1103/RevModPhys.80.225 [65] DOI: 10.1103/PhysRevLett.99.074502 [66] Pope, Turbulent Flows (2000) · Zbl 0966.76002 [67] Peyret, Spectral Methods for Incompressible Viscous Flow (2002) · Zbl 1005.76001 [68] DOI: 10.1103/PhysRevLett.97.264501 [69] Ottino, The Kinematics of Mixing: Stretching, Chaos and Transport (1989) · Zbl 0721.76015 [70] DOI: 10.1063/1.861722 [71] DOI: 10.1017/S0022112085000210 [72] DOI: 10.1017/S0022112090000829 [73] DOI: 10.1017/S0022112003004610 · Zbl 1054.76041 [74] DOI: 10.1017/S0022112003005597 · Zbl 1063.76579 [75] McComb, The Physics of Fluid Turbulence (1990) · Zbl 0748.76005 [76] DOI: 10.1017/S0022112006002138 · Zbl 1177.76169 [77] DOI: 10.1007/1-4020-4049-0_16 [78] DOI: 10.1063/1.2748443 · Zbl 1182.76452 [79] DOI: 10.1016/j.jnnfm.2005.12.012 · Zbl 1143.76337 [80] DOI: 10.1017/S0022112087000892 · Zbl 0616.76071 [81] DOI: 10.1007/s003480100288
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.