×

zbMATH — the first resource for mathematics

Direct numerical simulation of a \(30r\) long turbulent pipe flow at \(r ^+ = 685\): large- and very large-scale motions. (English) Zbl 1250.76116
From the summary: Fully developed incompressible turbulent pipe flow at Reynolds number \(Re_D=24 \, 580\) (based on bulk velocity) and Kármán number \(R^+ =684.8\) is simulated in a periodic domain with a length of 30 pipe radii \(R\). While single-point statistics match closely with experimental measurements, questions have been raised of whether streamwise energy spectra calculated from spatial data agree with the well-known bimodal spectrum shape in premultiplied spectra produced by experiments using Taylor’s hypothesis. The simulation supports the importance of large- and very large-scale motions (VLSMs, with streamwise wavelengths exceeding \(3R\)). Wavenumber spectral analysis shows evidence of a weak peak or flat region associated with VLSMs, independent of Taylor’s hypothesis, and comparisons with experimental spectra are consistent with recent findings that the long-wavelength streamwise velocity energy peak is overestimated when Taylor’s hypothesis is used. Yet, the spectrum behaviour retains otherwise similar properties to those documented based on experiment. The spectra also reveal the importance of motions of long streamwise length to the \(uu\) energy and \(uv\) Reynolds stress and support the general conclusions regarding these quantities formed using experimental measurements. Space-time correlations demonstrate that low-level correlations involving very large scales persist over \(40R/U_{bulk}\) in time and indicate that these motions convect at approximately the bulk velocity, including within the region approaching the wall. These very large streamwise motions are also observed to accelerate the flow near the wall based on force spectra, whereas smaller scales tend to decelerate the mean streamwise flow profile, in accordance with the behaviour observed in net force spectra of prior experiments. Net force spectra are resolved for the first time in the buffer layer and reveal an unexpectedly complex structure.

MSC:
76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025 · doi:10.1017/S0022112099005066
[2] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[3] DOI: 10.1017/S0022112004008389 · Zbl 1065.76552 · doi:10.1017/S0022112004008389
[4] DOI: 10.1103/PhysRevE.79.046316 · doi:10.1103/PhysRevE.79.046316
[5] DOI: 10.1017/S0022112009007721 · Zbl 1183.76025 · doi:10.1017/S0022112009007721
[6] DOI: 10.1017/S0022112008002085 · Zbl 1145.76393 · doi:10.1017/S0022112008002085
[7] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[8] DOI: 10.1007/s00348-011-1165-4 · doi:10.1007/s00348-011-1165-4
[9] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[10] DOI: 10.1017/S0022112078002293 · doi:10.1017/S0022112078002293
[11] DOI: 10.1098/rsta.2006.1940 · Zbl 1152.76369 · doi:10.1098/rsta.2006.1940
[12] DOI: 10.1017/S0022112009994071 · Zbl 1189.76028 · doi:10.1017/S0022112009994071
[13] DOI: 10.1017/S0022112008003492 · Zbl 1175.76003 · doi:10.1017/S0022112008003492
[14] DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185
[15] DOI: 10.1063/1.869451 · doi:10.1063/1.869451
[16] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[17] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[18] DOI: 10.1017/S0022112009991029 · Zbl 1183.76761 · doi:10.1017/S0022112009991029
[19] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[20] DOI: 10.1098/rspa.1938.0032 · JFM 64.1454.02 · doi:10.1098/rspa.1938.0032
[21] DOI: 10.1063/1.1570830 · Zbl 1186.76136 · doi:10.1063/1.1570830
[22] DOI: 10.1017/S002211209400131X · doi:10.1017/S002211209400131X
[23] Sreenivasan, Self-Sustaining Mechanisms of Wall Turbulence pp 253– (1997)
[24] del Álamo, Center for Turbulence Research Annual Research Briefs pp 329– (2001)
[25] DOI: 10.1017/S0022112008003352 · Zbl 1155.76031 · doi:10.1017/S0022112008003352
[26] Sreenivasan, Turbulence Management and Relaminarization pp 37– (1987)
[27] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[28] DOI: 10.1017/S0022112010002995 · Zbl 1205.76146 · doi:10.1017/S0022112010002995
[29] DOI: 10.1017/S002211200100667X · Zbl 1141.76408 · doi:10.1017/S002211200100667X
[30] DOI: 10.1063/1.2717527 · Zbl 1146.76307 · doi:10.1063/1.2717527
[31] DOI: 10.1063/1.857593 · doi:10.1063/1.857593
[32] DOI: 10.1017/S0022112075000298 · doi:10.1017/S0022112075000298
[33] DOI: 10.1063/1.3489528 · Zbl 06421190 · doi:10.1063/1.3489528
[34] DOI: 10.1007/s00348-011-1143-x · doi:10.1007/s00348-011-1143-x
[35] DOI: 10.1088/0957-0233/20/11/115401 · doi:10.1088/0957-0233/20/11/115401
[36] DOI: 10.1017/S002211200700777X · Zbl 1141.76316 · doi:10.1017/S002211200700777X
[37] DOI: 10.1017/S0022112009007423 · Zbl 1183.76036 · doi:10.1017/S0022112009007423
[38] DOI: 10.1017/S0022112009007769 · Zbl 1183.76035 · doi:10.1017/S0022112009007769
[39] DOI: 10.1017/S0022112009992126 · Zbl 1183.76747 · doi:10.1017/S0022112009992126
[40] DOI: 10.1098/rsta.2006.1945 · Zbl 1152.76409 · doi:10.1098/rsta.2006.1945
[41] DOI: 10.1017/S0022112081001249 · doi:10.1017/S0022112081001249
[42] DOI: 10.1063/1.3267726 · Zbl 1183.76346 · doi:10.1063/1.3267726
[43] DOI: 10.1017/S0022112009006946 · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[44] DOI: 10.1063/1.3453711 · Zbl 1190.76086 · doi:10.1063/1.3453711
[45] Marusic, Ten Chapters in Turbulence (2012)
[46] DOI: 10.1017/S0022112001005808 · Zbl 1102.76314 · doi:10.1017/S0022112001005808
[47] DOI: 10.1007/s00348-011-1117-z · doi:10.1007/s00348-011-1117-z
[48] DOI: 10.1017/S002211201000621X · Zbl 1225.76162 · doi:10.1017/S002211201000621X
[49] DOI: 10.1063/1.869617 · doi:10.1063/1.869617
[50] DOI: 10.1017/S0022112087000892 · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[51] DOI: 10.1063/1.858653 · doi:10.1063/1.858653
[52] DOI: 10.1017/S002211209900467X · Zbl 0946.76030 · doi:10.1017/S002211209900467X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.