×

zbMATH — the first resource for mathematics

Direct numerical simulation of stationary homogeneous stratified sheared turbulence. (English) Zbl 1250.76098
Summary: Using direct numerical simulation, we investigate stationary and homogeneous shear-driven turbulence in various stratifications, ranging from neutral to very stable. To attain and maintain a stationary flow, we throttle the mean shear so that the net production stays constant for all times. This results in a flow that is characterized solely by its mean shear and its mean buoyancy gradient, independent of initial conditions. The method of throttling is validated by comparison with experimental spectra in the case of neutral stratification. With increasing stratification comes the emergence of vertically sheared large-scale horizontal motions that preclude a straightforward interpretation of flow statistics. However, once these motions are excluded, simply by subtracting the horizontal average, the underlying flow appears amenable to the standard methods of turbulence analysis. It is shown that a direct acknowledgement of the confining influence of the periodic simulation box can lead to a meaningful physical interpretation of the large scales. Once an appropriate confinement scale is identified, many features, including horizontal spectra, flux-gradient relationships and length scales, of stratified sheared turbulence can be readily understood, both qualitatively and quantitatively, in terms of Monin-Obukhov similarity theory. Finally, the similarity-theory framework is used to interpret the scaling of the vertical diapycnal diffusivity in stratified turbulence.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
76F10 Shear flows and turbulence
76F45 Stratification effects in turbulence
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1175/1520-0469(1964)021&lt;0099:TSONIT&gt;2.0.CO;2 · doi:10.1175/1520-0469(1964)021<0099:TSONIT>2.0.CO;2
[2] DOI: 10.1017/S0022112005008128 · Zbl 1097.76039 · doi:10.1017/S0022112005008128
[3] DOI: 10.1146/annurev.fl.11.010179.001533 · doi:10.1146/annurev.fl.11.010179.001533
[4] DOI: 10.1175/1520-0469(1983)040&lt;0749:STATMV&gt;2.0.CO;2 · doi:10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2
[5] DOI: 10.1103/PhysRevE.68.036308 · doi:10.1103/PhysRevE.68.036308
[6] DOI: 10.1017/S0022112000002111 · Zbl 0961.76506 · doi:10.1017/S0022112000002111
[7] DOI: 10.1017/S0022112094002831 · Zbl 0825.76643 · doi:10.1017/S0022112094002831
[8] DOI: 10.1002/qj.49709841707 · doi:10.1002/qj.49709841707
[9] DOI: 10.1017/S0022112097005478 · Zbl 0900.76172 · doi:10.1017/S0022112097005478
[10] DOI: 10.1146/annurev.fluid.39.050905.110314 · Zbl 1136.76026 · doi:10.1146/annurev.fluid.39.050905.110314
[11] DOI: 10.1175/1520-0485(1993)023&lt;1508:TISSFI&gt;2.0.CO;2 · doi:10.1175/1520-0485(1993)023<1508:TISSFI>2.0.CO;2
[12] DOI: 10.1017/S0022112086002069 · doi:10.1017/S0022112086002069
[13] DOI: 10.1063/1.3139303 · Zbl 1183.76258 · doi:10.1063/1.3139303
[14] DOI: 10.1017/S002211200999053X · Zbl 1183.76755 · doi:10.1017/S002211200999053X
[15] DOI: 10.1023/A:1001788515355 · doi:10.1023/A:1001788515355
[16] DOI: 10.1063/1.868243 · Zbl 0866.76034 · doi:10.1063/1.868243
[17] DOI: 10.1017/S0022112092003513 · Zbl 0825.76310 · doi:10.1017/S0022112092003513
[18] DOI: 10.1007/BF00119875 · doi:10.1007/BF00119875
[19] DOI: 10.1017/S0022112089001114 · doi:10.1017/S0022112089001114
[20] DOI: 10.1029/JC092iC05p05249 · doi:10.1029/JC092iC05p05249
[21] DOI: 10.1063/1.3592329 · Zbl 06422385 · doi:10.1063/1.3592329
[22] DOI: 10.1017/S0022112004008067 · Zbl 1116.76304 · doi:10.1017/S0022112004008067
[23] DOI: 10.1063/1.868214 · Zbl 0830.76039 · doi:10.1063/1.868214
[24] DOI: 10.1017/S0022112086000307 · doi:10.1017/S0022112086000307
[25] DOI: 10.1017/S0022112093001235 · doi:10.1017/S0022112093001235
[26] DOI: 10.1017/S0022112089000765 · Zbl 0659.76060 · doi:10.1017/S0022112089000765
[27] DOI: 10.1017/S0022112084001592 · doi:10.1017/S0022112084001592
[28] DOI: 10.1007/s10546-011-9588-2 · doi:10.1007/s10546-011-9588-2
[29] DOI: 10.1146/annurev.fl.23.010191.002323 · doi:10.1146/annurev.fl.23.010191.002323
[30] DOI: 10.1017/S0022112057000269 · Zbl 0078.17902 · doi:10.1017/S0022112057000269
[31] DOI: 10.1017/S0022112003006992 · Zbl 1163.76379 · doi:10.1017/S0022112003006992
[32] van Driest, J. Aero. Sci. 23 pp 1007– (1956) · doi:10.2514/8.3713
[33] DOI: 10.1016/0021-9169(61)90116-7 · doi:10.1016/0021-9169(61)90116-7
[34] DOI: 10.1017/S0022112078001019 · doi:10.1017/S0022112078001019
[35] DOI: 10.1002/qj.49709841708 · doi:10.1002/qj.49709841708
[36] DOI: 10.1029/JC087iC12p09601 · doi:10.1029/JC087iC12p09601
[37] DOI: 10.1175/1520-0469(1971)028&lt;0181:FPRITA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
[38] DOI: 10.1146/annurev.fluid.36.050802.122121 · Zbl 1125.86313 · doi:10.1146/annurev.fluid.36.050802.122121
[39] DOI: 10.1016/j.jcp.2006.10.018 · Zbl 1201.76076 · doi:10.1016/j.jcp.2006.10.018
[40] DOI: 10.1146/annurev.fluid.32.1.203 · Zbl 0988.76042 · doi:10.1146/annurev.fluid.32.1.203
[41] DOI: 10.1017/S0022112007006854 · Zbl 1168.76327 · doi:10.1017/S0022112007006854
[42] DOI: 10.1017/S0022112004000977 · Zbl 1063.76044 · doi:10.1017/S0022112004000977
[43] DOI: 10.1063/1.1369125 · doi:10.1063/1.1369125
[44] DOI: 10.1017/S0022112091001957 · Zbl 0721.76036 · doi:10.1017/S0022112091001957
[45] DOI: 10.1017/S0022112092001149 · Zbl 0743.76040 · doi:10.1017/S0022112092001149
[46] Turner, Buoyancy Effects in Fluids (1973) · Zbl 0262.76067 · doi:10.1017/CBO9780511608827
[47] DOI: 10.1017/S0022112097007970 · Zbl 0905.76038 · doi:10.1017/S0022112097007970
[48] DOI: 10.1017/S0022112009990711 · Zbl 1183.76759 · doi:10.1017/S0022112009990711
[49] DOI: 10.1029/2009GL041514 · doi:10.1029/2009GL041514
[50] DOI: 10.1017/S0022112083001251 · doi:10.1017/S0022112083001251
[51] DOI: 10.1017/S0022112097008641 · Zbl 0920.76035 · doi:10.1017/S0022112097008641
[52] DOI: 10.1098/rspa.1991.0087 · Zbl 0726.76050 · doi:10.1098/rspa.1991.0087
[53] DOI: 10.1016/0021-9991(91)90238-G · Zbl 0726.76074 · doi:10.1016/0021-9991(91)90238-G
[54] DOI: 10.1175/1520-0485(2001)031&lt;1969:TEOMIT&gt;2.0.CO;2 · doi:10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2
[55] DOI: 10.1063/1.870385 · Zbl 1149.76542 · doi:10.1063/1.870385
[56] DOI: 10.1017/S0022112001006309 · Zbl 1009.76040 · doi:10.1017/S0022112001006309
[57] DOI: 10.1017/S0022112004002587 · Zbl 1065.76108 · doi:10.1017/S0022112004002587
[58] DOI: 10.1017/S0022112000008405 · Zbl 0981.76038 · doi:10.1017/S0022112000008405
[59] DOI: 10.1063/1.1764431 · Zbl 1186.76465 · doi:10.1063/1.1764431
[60] DOI: 10.1017/S0022112094001370 · doi:10.1017/S0022112094001370
[61] DOI: 10.1175/2007JAS2455.1 · doi:10.1175/2007JAS2455.1
[62] DOI: 10.1146/annurev.fluid.32.1.613 · Zbl 0988.76019 · doi:10.1146/annurev.fluid.32.1.613
[63] DOI: 10.1063/1.1578077 · Zbl 1186.76446 · doi:10.1063/1.1578077
[64] DOI: 10.1063/1.869100 · Zbl 1027.76582 · doi:10.1063/1.869100
[65] DOI: 10.1017/S002211200400120X · Zbl 1060.76514 · doi:10.1017/S002211200400120X
[66] DOI: 10.1017/S002211209600434X · doi:10.1017/S002211209600434X
[67] DOI: 10.1146/annurev.fluid.35.101101.161144 · Zbl 1041.76024 · doi:10.1146/annurev.fluid.35.101101.161144
[68] DOI: 10.1017/S0022112094003915 · doi:10.1017/S0022112094003915
[69] DOI: 10.1175/1520-0485(1980)010&lt;0083:EOTLRO&gt;2.0.CO;2 · doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
[70] DOI: 10.1175/1520-0485(1982)012&lt;0256:DOTROD&gt;2.0.CO;2 · doi:10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2
[71] DOI: 10.1017/S0022112089001126 · doi:10.1017/S0022112089001126
[72] Lumley, The Structure of Atmospheric Turbulence (1964)
[73] DOI: 10.1063/1.1762200 · doi:10.1063/1.1762200
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.